System characterization of a novel haptic interface for natural orifice translumenal endoscopic surgery simulation

Saurabh Dargar, Ganesh Sankaranarayanan, Suvranu De

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A virtual reality NOTES simulator developed at the CeMSIM at RPI to train surgeons in NOTES. A novel 2 DOF decoupled haptic device was designed and built for this simulator. The haptic device can render 5.62 N and 190.05 N-mm of continuous force and torque respectively. In this work we have evaluated the haptic interface and developed a model to accurately describe the system behavior, to further incorporate into an impedance type controller for realistic haptic rendering in the VTEST.

Natural orifice translumenal endoscopic surgery (NOTES) is a minimally invasive procedure, which utilizes the body's natural orifices to gain access to the peritoneal cavity. The VTEST

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages375-379
Number of pages5
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Externally publishedYes
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period8/26/148/30/14

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • Medicine(all)

Fingerprint

Dive into the research topics of 'System characterization of a novel haptic interface for natural orifice translumenal endoscopic surgery simulation'. Together they form a unique fingerprint.

Cite this