Targeted, homology-driven gene insertion in stem cells by ZFN-loaded ‘all-in-one’ lentiviral vectors

Yujia Cai, Anders Laustsen, Yan Zhou, Chenglong Sun, Mads Valdemar Anderson, Shengting Li, Niels Uldbjerg, Yonglun Luo, Martin R. Jakobsen, Jacob Giehm Mikkelsen

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Biased integration remains a key challenge for gene therapy based on lentiviral vector technologies. Engineering of next-generation lentiviral vectors targeting safe genomic harbors for insertion is therefore of high relevance. In a previous paper (Cai et al., 2014a), we showed the use of integrase-defective lentiviral vectors (IDLVs) as carriers of complete gene repair kits consisting of zinc-finger nuclease (ZFN) proteins and repair sequences, allowing gene correction by homologous recombination (HR). Here, we follow this strategy to engineer ZFN-loaded IDLVs that insert transgenes by a homology-driven mechanism into safe loci. This insertion mechanism is driven by time-restricted exposure of treated cells to ZFNs. We show targeted gene integration in human stem cells, including CD34+ hematopoietic progenitors and induced pluripotent stem cells (iPSCs). Notably, targeted insertions are identified in 89% of transduced iPSCs. Our findings demonstrate the applicability of nuclease-loaded ‘all-in-one’ IDLVs for site-directed gene insertion in stem cell- based gene therapies.

Original languageEnglish (US)
Article numbere12213
JournaleLife
Volume5
Issue numberJUN2016
DOIs
StatePublished - Jun 9 2016
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience
  • General Immunology and Microbiology
  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Targeted, homology-driven gene insertion in stem cells by ZFN-loaded ‘all-in-one’ lentiviral vectors'. Together they form a unique fingerprint.

Cite this