tDCS modulates behavioral performance and the neural oscillatory dynamics serving visual selective attention

Timothy J. McDermott, Alex I. Wiesman, Mackenzie S. Mills, Rachel K. Spooner, Nathan M. Coolidge, Amy L. Proskovec, Elizabeth Heinrichs-Graham, Tony W. Wilson

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Transcranial direct-current stimulation (tDCS) is a noninvasive method for modulating human brain activity. Although there are several hypotheses about the net effects of tDCS on brain function, the field's understanding remains incomplete and this is especially true for neural oscillatory activity during cognitive task performance. In this study, we examined whether different polarities of occipital tDCS differentially alter flanker task performance and the underlying neural dynamics. To this end, 48 healthy adults underwent 20 min of anodal, cathodal, or sham occipital tDCS, and then completed a visual flanker task during high-density magnetoencephalography (MEG). The resulting oscillatory responses were imaged in the time-frequency domain using beamforming, and the effects of tDCS on task-related oscillations and spontaneous neural activity were assessed. The results indicated that anodal tDCS of the occipital cortices inhibited flanker task performance as measured by reaction time, elevated spontaneous activity in the theta (4–7 Hz) and alpha (9–14 Hz) bands in prefrontal and occipital cortices, respectively, and reduced task-related theta oscillatory activity in prefrontal cortices during task performance. Cathodal tDCS of the occipital cortices did not significantly affect behavior or any of these neuronal parameters in any brain region. Lastly, the power of theta oscillations in the prefrontal cortices was inversely correlated with reaction time. In conclusion, anodal tDCS modulated task-related oscillations and spontaneous activity across multiple cortical areas, both near the electrode and in distant sites that were putatively connected to the targeted regions.

Original languageEnglish (US)
Pages (from-to)729-740
Number of pages12
JournalHuman Brain Mapping
Volume40
Issue number3
DOIs
StatePublished - Feb 15 2019
Externally publishedYes

Keywords

  • alpha
  • direct-current stimulation
  • magnetoencephalography
  • oscillation
  • theta

ASJC Scopus subject areas

  • Anatomy
  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Neurology
  • Clinical Neurology

Fingerprint

Dive into the research topics of 'tDCS modulates behavioral performance and the neural oscillatory dynamics serving visual selective attention'. Together they form a unique fingerprint.

Cite this