TH‐A‐116‐04: A Universal Predictive DVH Modeling Toolkit

J. Tan, L. Appenzoller, D. Yang, S. Mutic, K. Moore

Research output: Contribution to journalArticle

Abstract

Purpose: The goal of this work was to develop an efficient DICOM‐based tool to create predictive DVH (pDVH) models for treatment plan automation and knowledge‐based IMRT quality control (QC) independent of treatment planning system (TPS). Methods: The tool was implemented in MATLAB. RT dose and structure files exported from different TPSs including Eclipse, Pinnacle, and Tomotherapy were used as the input to the pDVH DICOM tool. pDVH models based on the correlation of expected dose to the distance from a voxel to the PTV surface in a cohort of patients were created for multiple treatment sites (intact prostate, prostate bed, head‐and‐neck, endometrial, cervical). To accelerate the computation of a distance vector field for efficient model building, multiple techniques were employed including GPUs acceleration and parallel computation using multiple CPU cores. The tool has a full GUI and can also run in batch mode with minimal user interaction. It automatically identifies outliers for treatment plan quality control and pDVH model refinement. Identified outliers can be replanned and reimported to refine the accuracy of the DVH prediction. Results: The inclusion of GPUs reduces computation time by 200 times, requiring <1 second to compute an OAR vector field and only a few seconds to build a pDVH model. The pDVH DICOM tool has been used by multiple institutions and pDVH models for intact prostate and cervical cancer were created in less than one hour without GPU acceleration. Conclusion: We developed a universal DICOM‐based tool that provides clinicians a novel and highly efficient plan quality control mechanism by predicting OAR DVHs based on local institutional best practices. This technology can be used to asses inter‐institutional and inter‐TPS plan quality based on aggregate clinical data instead of contrived benchmark planning sets. Supported by a research agreement with Varian Medical Systems.

Original languageEnglish (US)
Number of pages1
JournalMedical Physics
Volume40
Issue number6
DOIs
StatePublished - Jan 1 2013

Fingerprint

Quality Control
Prostate
Institutional Practice
Benchmarking
Equidae
Automation
Therapeutics
Practice Guidelines
Uterine Cervical Neoplasms
Prostatic Neoplasms
Technology
Research

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

Tan, J., Appenzoller, L., Yang, D., Mutic, S., & Moore, K. (2013). TH‐A‐116‐04: A Universal Predictive DVH Modeling Toolkit. Medical Physics, 40(6). https://doi.org/10.1118/1.4815733

TH‐A‐116‐04 : A Universal Predictive DVH Modeling Toolkit. / Tan, J.; Appenzoller, L.; Yang, D.; Mutic, S.; Moore, K.

In: Medical Physics, Vol. 40, No. 6, 01.01.2013.

Research output: Contribution to journalArticle

Tan, J, Appenzoller, L, Yang, D, Mutic, S & Moore, K 2013, 'TH‐A‐116‐04: A Universal Predictive DVH Modeling Toolkit', Medical Physics, vol. 40, no. 6. https://doi.org/10.1118/1.4815733
Tan, J. ; Appenzoller, L. ; Yang, D. ; Mutic, S. ; Moore, K. / TH‐A‐116‐04 : A Universal Predictive DVH Modeling Toolkit. In: Medical Physics. 2013 ; Vol. 40, No. 6.
@article{55a0debdb3aa4a6da4d14e1706a8e247,
title = "TH‐A‐116‐04: A Universal Predictive DVH Modeling Toolkit",
abstract = "Purpose: The goal of this work was to develop an efficient DICOM‐based tool to create predictive DVH (pDVH) models for treatment plan automation and knowledge‐based IMRT quality control (QC) independent of treatment planning system (TPS). Methods: The tool was implemented in MATLAB. RT dose and structure files exported from different TPSs including Eclipse, Pinnacle, and Tomotherapy were used as the input to the pDVH DICOM tool. pDVH models based on the correlation of expected dose to the distance from a voxel to the PTV surface in a cohort of patients were created for multiple treatment sites (intact prostate, prostate bed, head‐and‐neck, endometrial, cervical). To accelerate the computation of a distance vector field for efficient model building, multiple techniques were employed including GPUs acceleration and parallel computation using multiple CPU cores. The tool has a full GUI and can also run in batch mode with minimal user interaction. It automatically identifies outliers for treatment plan quality control and pDVH model refinement. Identified outliers can be replanned and reimported to refine the accuracy of the DVH prediction. Results: The inclusion of GPUs reduces computation time by 200 times, requiring <1 second to compute an OAR vector field and only a few seconds to build a pDVH model. The pDVH DICOM tool has been used by multiple institutions and pDVH models for intact prostate and cervical cancer were created in less than one hour without GPU acceleration. Conclusion: We developed a universal DICOM‐based tool that provides clinicians a novel and highly efficient plan quality control mechanism by predicting OAR DVHs based on local institutional best practices. This technology can be used to asses inter‐institutional and inter‐TPS plan quality based on aggregate clinical data instead of contrived benchmark planning sets. Supported by a research agreement with Varian Medical Systems.",
author = "J. Tan and L. Appenzoller and D. Yang and S. Mutic and K. Moore",
year = "2013",
month = "1",
day = "1",
doi = "10.1118/1.4815733",
language = "English (US)",
volume = "40",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "6",

}

TY - JOUR

T1 - TH‐A‐116‐04

T2 - A Universal Predictive DVH Modeling Toolkit

AU - Tan, J.

AU - Appenzoller, L.

AU - Yang, D.

AU - Mutic, S.

AU - Moore, K.

PY - 2013/1/1

Y1 - 2013/1/1

N2 - Purpose: The goal of this work was to develop an efficient DICOM‐based tool to create predictive DVH (pDVH) models for treatment plan automation and knowledge‐based IMRT quality control (QC) independent of treatment planning system (TPS). Methods: The tool was implemented in MATLAB. RT dose and structure files exported from different TPSs including Eclipse, Pinnacle, and Tomotherapy were used as the input to the pDVH DICOM tool. pDVH models based on the correlation of expected dose to the distance from a voxel to the PTV surface in a cohort of patients were created for multiple treatment sites (intact prostate, prostate bed, head‐and‐neck, endometrial, cervical). To accelerate the computation of a distance vector field for efficient model building, multiple techniques were employed including GPUs acceleration and parallel computation using multiple CPU cores. The tool has a full GUI and can also run in batch mode with minimal user interaction. It automatically identifies outliers for treatment plan quality control and pDVH model refinement. Identified outliers can be replanned and reimported to refine the accuracy of the DVH prediction. Results: The inclusion of GPUs reduces computation time by 200 times, requiring <1 second to compute an OAR vector field and only a few seconds to build a pDVH model. The pDVH DICOM tool has been used by multiple institutions and pDVH models for intact prostate and cervical cancer were created in less than one hour without GPU acceleration. Conclusion: We developed a universal DICOM‐based tool that provides clinicians a novel and highly efficient plan quality control mechanism by predicting OAR DVHs based on local institutional best practices. This technology can be used to asses inter‐institutional and inter‐TPS plan quality based on aggregate clinical data instead of contrived benchmark planning sets. Supported by a research agreement with Varian Medical Systems.

AB - Purpose: The goal of this work was to develop an efficient DICOM‐based tool to create predictive DVH (pDVH) models for treatment plan automation and knowledge‐based IMRT quality control (QC) independent of treatment planning system (TPS). Methods: The tool was implemented in MATLAB. RT dose and structure files exported from different TPSs including Eclipse, Pinnacle, and Tomotherapy were used as the input to the pDVH DICOM tool. pDVH models based on the correlation of expected dose to the distance from a voxel to the PTV surface in a cohort of patients were created for multiple treatment sites (intact prostate, prostate bed, head‐and‐neck, endometrial, cervical). To accelerate the computation of a distance vector field for efficient model building, multiple techniques were employed including GPUs acceleration and parallel computation using multiple CPU cores. The tool has a full GUI and can also run in batch mode with minimal user interaction. It automatically identifies outliers for treatment plan quality control and pDVH model refinement. Identified outliers can be replanned and reimported to refine the accuracy of the DVH prediction. Results: The inclusion of GPUs reduces computation time by 200 times, requiring <1 second to compute an OAR vector field and only a few seconds to build a pDVH model. The pDVH DICOM tool has been used by multiple institutions and pDVH models for intact prostate and cervical cancer were created in less than one hour without GPU acceleration. Conclusion: We developed a universal DICOM‐based tool that provides clinicians a novel and highly efficient plan quality control mechanism by predicting OAR DVHs based on local institutional best practices. This technology can be used to asses inter‐institutional and inter‐TPS plan quality based on aggregate clinical data instead of contrived benchmark planning sets. Supported by a research agreement with Varian Medical Systems.

UR - http://www.scopus.com/inward/record.url?scp=85024804438&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85024804438&partnerID=8YFLogxK

U2 - 10.1118/1.4815733

DO - 10.1118/1.4815733

M3 - Article

AN - SCOPUS:85024804438

VL - 40

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 6

ER -