The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation

Luying Jia, Bing Li, Hongtao Yu

Research output: Contribution to journalArticle

50 Scopus citations

Abstract

The spindle checkpoint senses unattached kinetochores and inhibits the Cdc20-bound anaphase-promoting complex or cyclosome (APC/C), to delay anaphase, thereby preventing aneuploidy. A critical checkpoint inhibitor of APC/C Cdc20 is the mitotic checkpoint complex (MCC). It is unclear whether MCC suffices to inhibit all cellular APC/C. Here we show that human checkpoint kinase Bub1 not only directly phosphorylates Cdc20, but also scaffolds Plk1-mediated phosphorylation of Cdc20. Phosphorylation of Cdc20 by Bub1-Plk1 inhibits APC/C Cdc20 in vitro and is required for checkpoint signalling in human cells. Bub1-Plk1-dependent Cdc20 phosphorylation is regulated by upstream checkpoint signals and is dispensable for MCC assembly. A phospho-mimicking Cdc20 mutant restores nocodazole-induced mitotic arrest in cells depleted of Mad2 or BubR1. Thus, Bub1-Plk1-mediated phosphorylation of Cdc20 constitutes an APC/C-inhibitory mechanism that is parallel, but not redundant, to MCC formation. Both mechanisms are required to sustain mitotic arrest in response to spindle defects.

Original languageEnglish (US)
Article number10818
JournalNature Communications
Volume7
DOIs
StatePublished - Feb 25 2016

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Chemistry(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation'. Together they form a unique fingerprint.

  • Cite this