The fluorene catabolic linear plasmid in Terrabacter sp. strain DBF63 carries the β-ketoadipate pathway genes, pcaRHGBDCFIJ, also found in proteobacteria

Hiroshi Habe, Jin Sung Chung, Ayako Ishida, Kano Kasuga, Kazuki Ide, Tetsuo Takemura, Hideaki Nojiri, Hisakazu Yamane, Toshio Omori

Research output: Contribution to journalArticle

17 Scopus citations


Terrabacter sp. strain DBF63 is capable of degrading fluorene (FN) to tricarboxylic acid cycle intermediates via phthalate and protocatechuate. Genes were identified for the protocatechuate branch of the β-ketoadipate pathway (pcaR, pcaHGBDCFIJ) by sequence analysis of a 70 kb DNA region of the FN-catabolic linear plasmid pDBF1. RT-PCR analysis of RNA from DBF63 cells grown with FN, dibenzofuran, and protocatechuate indicated that the pcaHGBDCFIJ operon was expressed during both FN and protocatechuate degradation in strain DBF63. The gene encoding β-ketoadipate enol-lactone hydrolase (pcaD) was not fused to the next gene, which encodes γ-carboxymuconolactone decarboxylase (pcaC), in strain DBF63, even though the presence of the pcaL gene (the fusion of pcaD and pcaC) within a pca gene cluster has been thought to be a Gram-positive trait. Quantitative RT-PCR analysis revealed that pcaD mRNA levels increased sharply in response to protocatechuate, and a biotransformation experiment with cis,cis-muconate using Escherichia coli carrying both catBC and pcaD indicated that PcaD exhibited β-ketoadipate enol-lactone hydrolase activity. The location of the pca gene cluster on the linear plasmid, and the insertion sequences around the pca gene cluster suggest that the ecologically important β-ketoadipate pathway genes, usually located chromosomally, may be spread widely among bacterial species via horizontal transfer or transposition events.

Original languageEnglish (US)
Pages (from-to)3713-3722
Number of pages10
Issue number11
Publication statusPublished - Nov 2005


ASJC Scopus subject areas

  • Microbiology

Cite this