The Karyote® Physico-Chemical Genomic, Proteomic, Metabolic Cell Modeling System

P. Ortoleva, E. Berry, Y. Brun, J. Fan, M. Fontus, K. Hubbard, K. Jaqaman, L. Jarymowycz, A. Navid, A. Sayyed-Ahmad, Z. Shreif, F. Stanley, K. Tuncay, E. Weitzke, L. C. Wu

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Modeling approaches to the dynamics of a living cell are presented that are strongly based on its underlying physical and chemical processes and its hierarchical spatio-temporal organization. Through the inclusion of a broad spectrum of processes and a rigorous analysis of the multiple scale nature of cellular dynamics, we are attempting to advance cell modeling and its applications. The presentation focuses on our cell modeling system, which integrates data archiving and quantitative physico-chemical modeling and information theory to provide a seamless approach to the modeling/data analysis endeavor. Thereby the rapidly growing mess of genomic, proteomic, metabolic, and cell physiological data can be automatically used to develop and calibrate a predictive cell model. The discussion focuses on the Karyote® cell modeling system and an introduction to the CellX® and VirusX® models. The Karyote software system integrates three elements: (1) a model-building and data archiving module that allows one to define a cell type to be modeled through its reaction network, structure, and transport processes as well as to choose the surrounding medium and other parameters of the phenomenon to be modeled; (2) a genomic, proteomic, metabolic cell simulator that solves the equations of metabolic reaction, transcription/translation polymerization and the exchange of molecules between parts of the cell and with the surrounding medium; and (3) an information theory module (ITM) that automates model calibration and development, and integrates a variety of data types with the cell dynamic computations. In Karyote, reactions may be fast (equilibrated) or slow (finite rate), and the special effects of enzymes and other minority species yielding steady-state cycles of arbitrary complexities are accounted for. These features of the dynamics are handled via rigorous multiple scale analysis. A user interface allows for an automated generation and solution of the equations of multiple timescale, compartmented dynamics. Karyote is based on a fixed intracellular structure. However, cell response to changes in the host medium, damage, development or transformation to abnormality can involve dramatic changes in intracellular structure. As this changes the nature of the cellular dynamics, a new model, CellX, is being developed based on the spatial distribution of concentration and other variables. This allows CellX to capture the self-organizing character of cellular behavior. The self-assembly of organelles, viruses, and other subcellular bodies is being addressed in a second new model, VirusX, that integrates molecular mechanics and continuum theory. VirusX is designed to study the influence of a host medium on viral self-assembly, structural stability, infection of a single cell, and transmission of disease.

Original languageEnglish (US)
Pages (from-to)269-283
Number of pages15
JournalOMICS A Journal of Integrative Biology
Issue number3
StatePublished - Jan 1 2003

ASJC Scopus subject areas

  • Biotechnology
  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Genetics


Dive into the research topics of 'The Karyote® Physico-Chemical Genomic, Proteomic, Metabolic Cell Modeling System'. Together they form a unique fingerprint.

Cite this