The material state of centrosomes: lattice, liquid, or gel?

Research output: Contribution to journalReview articlepeer-review

Abstract

Centrosomes are micron-scale structures that nucleate microtubule arrays for chromosome segregation and mitotic spindle positioning. For these jobs, centrosomes must be dynamic enough to grow, yet stable enough to resist microtubule-mediated forces. How do centrosomes achieve such seemingly contradictory features? While much is understood about the molecular parts of centrosomes, very little is known about their functional material properties. Two prevalent hypotheses pose that the centrosome is either a liquid droplet or a solid lattice. However, many material states exist between a pure Newtonian liquid and a crystalline solid, and it is not clear where centrosomes lie along this spectrum. Furthermore, broad terms like “liquid” or “solid” do not reveal functional properties like strength, ductility, elasticity, and toughness, which are more relevant to understand how centrosomes resist forces. This review covers recent findings and new rheology techniques that reveal the material characteristics of centrosomes and how they are regulated.

Original languageEnglish (US)
Pages (from-to)139-147
Number of pages9
JournalCurrent Opinion in Structural Biology
Volume66
DOIs
StatePublished - Feb 2021

ASJC Scopus subject areas

  • Structural Biology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'The material state of centrosomes: lattice, liquid, or gel?'. Together they form a unique fingerprint.

Cite this