The mechanisms of and the interrelationship between bile acid and chylomicron-mediated regulation of hepatic cholesterol synthesis in the liver of the rat

F. O. Nervi, J. M. Dietschy

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Hepatic cholesterol synthesis is controlled both by the size of the bile acid pool in the enterohepatic circulation and by the amount of cholesterol reaching the liver carried in chylomicron remnants. These studies were undertaken to examine how these two control mechanisms are interrelated. When the size of the pool was systematically varied, the logarithm of the rate of hepatic cholesterol synthesis varied in an inverse linear fashion with the size of the taurocholate pool between the limits of 0 and 60 mg of bile acid per 100 g of body weight. The slope of this relationship gave the fractional inhibition of cholesterol synthesis associated with expansion of the taurocholate pool and was critically dependent upon the amount of cholesterol available for absorption from the gastrointestinal tract. Furthermore, the degree of inhibition of cholesterol synthesis in the liver seen with taurocholate feeding was reduced by partially blocking cholesterol absorption with β-sitosterol even though the bile acid pool was still markedly expanded. In rats with diversion of the intestinal lymph from the blood, a five-fold expansion of the taurocholate pool resulted in only slight suppression of the rate of hepatic cholesterol synthesis, and even this inhibition was shown to be attributable to small amounts of cholesterol absorbed through collateral lymphatic vessels and (or) to a fasting effect. Similarly, the infusion of either taurocholate or a combination of taurocholate and taurochenate into rats with no biliary or dietary cholesterol available for absorption caused no suppression of hepatic cholesterol synthesis. Finally, the effect of changes in the rate of bile acid synthesis on hepatic cholesterol synthesis was examined. The fractional inhibition of cholesterol synthesis found after administration of an amount of cholesterol sufficient to raise the hepatic cholesterol ester content by 1mg/g equalled only -0.36 when bile acid synthesis was increased by biliary diversion but was -0.92 when bile acid synthesis was suppressed by bile acid feeding. It is concluded that (a) bile acids are not direct effectors of the rate of hepatic cholesterol synthesis, (b) most of the inhibitory activity seen with bile acid feeding is mediated through increased cholesterol absorption, and (c) bile acids do have an intrahepatic effect in that they regulate hepatic cholesterol synthesis indirectly by altering the flow of cellular cholesterol to bile acids.

Original languageEnglish (US)
Pages (from-to)895-909
Number of pages15
JournalJournal of Clinical Investigation
Volume61
Issue number4
StatePublished - 1978

Fingerprint

Chylomicrons
Bile Acids and Salts
Cholesterol
Liver
Taurocholic Acid
Chylomicron Remnants
Enterohepatic Circulation
Dietary Cholesterol
Lymphatic Vessels
Cholesterol Esters

ASJC Scopus subject areas

  • Medicine(all)

Cite this

@article{30f254ccd57b4219a84c4b21f62730c9,
title = "The mechanisms of and the interrelationship between bile acid and chylomicron-mediated regulation of hepatic cholesterol synthesis in the liver of the rat",
abstract = "Hepatic cholesterol synthesis is controlled both by the size of the bile acid pool in the enterohepatic circulation and by the amount of cholesterol reaching the liver carried in chylomicron remnants. These studies were undertaken to examine how these two control mechanisms are interrelated. When the size of the pool was systematically varied, the logarithm of the rate of hepatic cholesterol synthesis varied in an inverse linear fashion with the size of the taurocholate pool between the limits of 0 and 60 mg of bile acid per 100 g of body weight. The slope of this relationship gave the fractional inhibition of cholesterol synthesis associated with expansion of the taurocholate pool and was critically dependent upon the amount of cholesterol available for absorption from the gastrointestinal tract. Furthermore, the degree of inhibition of cholesterol synthesis in the liver seen with taurocholate feeding was reduced by partially blocking cholesterol absorption with β-sitosterol even though the bile acid pool was still markedly expanded. In rats with diversion of the intestinal lymph from the blood, a five-fold expansion of the taurocholate pool resulted in only slight suppression of the rate of hepatic cholesterol synthesis, and even this inhibition was shown to be attributable to small amounts of cholesterol absorbed through collateral lymphatic vessels and (or) to a fasting effect. Similarly, the infusion of either taurocholate or a combination of taurocholate and taurochenate into rats with no biliary or dietary cholesterol available for absorption caused no suppression of hepatic cholesterol synthesis. Finally, the effect of changes in the rate of bile acid synthesis on hepatic cholesterol synthesis was examined. The fractional inhibition of cholesterol synthesis found after administration of an amount of cholesterol sufficient to raise the hepatic cholesterol ester content by 1mg/g equalled only -0.36 when bile acid synthesis was increased by biliary diversion but was -0.92 when bile acid synthesis was suppressed by bile acid feeding. It is concluded that (a) bile acids are not direct effectors of the rate of hepatic cholesterol synthesis, (b) most of the inhibitory activity seen with bile acid feeding is mediated through increased cholesterol absorption, and (c) bile acids do have an intrahepatic effect in that they regulate hepatic cholesterol synthesis indirectly by altering the flow of cellular cholesterol to bile acids.",
author = "Nervi, {F. O.} and Dietschy, {J. M.}",
year = "1978",
language = "English (US)",
volume = "61",
pages = "895--909",
journal = "Journal of Clinical Investigation",
issn = "0021-9738",
publisher = "The American Society for Clinical Investigation",
number = "4",

}

TY - JOUR

T1 - The mechanisms of and the interrelationship between bile acid and chylomicron-mediated regulation of hepatic cholesterol synthesis in the liver of the rat

AU - Nervi, F. O.

AU - Dietschy, J. M.

PY - 1978

Y1 - 1978

N2 - Hepatic cholesterol synthesis is controlled both by the size of the bile acid pool in the enterohepatic circulation and by the amount of cholesterol reaching the liver carried in chylomicron remnants. These studies were undertaken to examine how these two control mechanisms are interrelated. When the size of the pool was systematically varied, the logarithm of the rate of hepatic cholesterol synthesis varied in an inverse linear fashion with the size of the taurocholate pool between the limits of 0 and 60 mg of bile acid per 100 g of body weight. The slope of this relationship gave the fractional inhibition of cholesterol synthesis associated with expansion of the taurocholate pool and was critically dependent upon the amount of cholesterol available for absorption from the gastrointestinal tract. Furthermore, the degree of inhibition of cholesterol synthesis in the liver seen with taurocholate feeding was reduced by partially blocking cholesterol absorption with β-sitosterol even though the bile acid pool was still markedly expanded. In rats with diversion of the intestinal lymph from the blood, a five-fold expansion of the taurocholate pool resulted in only slight suppression of the rate of hepatic cholesterol synthesis, and even this inhibition was shown to be attributable to small amounts of cholesterol absorbed through collateral lymphatic vessels and (or) to a fasting effect. Similarly, the infusion of either taurocholate or a combination of taurocholate and taurochenate into rats with no biliary or dietary cholesterol available for absorption caused no suppression of hepatic cholesterol synthesis. Finally, the effect of changes in the rate of bile acid synthesis on hepatic cholesterol synthesis was examined. The fractional inhibition of cholesterol synthesis found after administration of an amount of cholesterol sufficient to raise the hepatic cholesterol ester content by 1mg/g equalled only -0.36 when bile acid synthesis was increased by biliary diversion but was -0.92 when bile acid synthesis was suppressed by bile acid feeding. It is concluded that (a) bile acids are not direct effectors of the rate of hepatic cholesterol synthesis, (b) most of the inhibitory activity seen with bile acid feeding is mediated through increased cholesterol absorption, and (c) bile acids do have an intrahepatic effect in that they regulate hepatic cholesterol synthesis indirectly by altering the flow of cellular cholesterol to bile acids.

AB - Hepatic cholesterol synthesis is controlled both by the size of the bile acid pool in the enterohepatic circulation and by the amount of cholesterol reaching the liver carried in chylomicron remnants. These studies were undertaken to examine how these two control mechanisms are interrelated. When the size of the pool was systematically varied, the logarithm of the rate of hepatic cholesterol synthesis varied in an inverse linear fashion with the size of the taurocholate pool between the limits of 0 and 60 mg of bile acid per 100 g of body weight. The slope of this relationship gave the fractional inhibition of cholesterol synthesis associated with expansion of the taurocholate pool and was critically dependent upon the amount of cholesterol available for absorption from the gastrointestinal tract. Furthermore, the degree of inhibition of cholesterol synthesis in the liver seen with taurocholate feeding was reduced by partially blocking cholesterol absorption with β-sitosterol even though the bile acid pool was still markedly expanded. In rats with diversion of the intestinal lymph from the blood, a five-fold expansion of the taurocholate pool resulted in only slight suppression of the rate of hepatic cholesterol synthesis, and even this inhibition was shown to be attributable to small amounts of cholesterol absorbed through collateral lymphatic vessels and (or) to a fasting effect. Similarly, the infusion of either taurocholate or a combination of taurocholate and taurochenate into rats with no biliary or dietary cholesterol available for absorption caused no suppression of hepatic cholesterol synthesis. Finally, the effect of changes in the rate of bile acid synthesis on hepatic cholesterol synthesis was examined. The fractional inhibition of cholesterol synthesis found after administration of an amount of cholesterol sufficient to raise the hepatic cholesterol ester content by 1mg/g equalled only -0.36 when bile acid synthesis was increased by biliary diversion but was -0.92 when bile acid synthesis was suppressed by bile acid feeding. It is concluded that (a) bile acids are not direct effectors of the rate of hepatic cholesterol synthesis, (b) most of the inhibitory activity seen with bile acid feeding is mediated through increased cholesterol absorption, and (c) bile acids do have an intrahepatic effect in that they regulate hepatic cholesterol synthesis indirectly by altering the flow of cellular cholesterol to bile acids.

UR - http://www.scopus.com/inward/record.url?scp=0017842168&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0017842168&partnerID=8YFLogxK

M3 - Article

C2 - 566279

AN - SCOPUS:0017842168

VL - 61

SP - 895

EP - 909

JO - Journal of Clinical Investigation

JF - Journal of Clinical Investigation

SN - 0021-9738

IS - 4

ER -