Three-dimensional printer-aided casting of soft, custom silicone boluses (SCSBs) for head and neck radiation therapy

Tsuicheng Chiu, Jun Tan, Mathew Brenner, Xuejun Gu, Ming Yang, Kenneth Westover, Tobin Strom, David Sher, Steve Jiang, Bo Zhao

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Purpose: Custom tissue compensators provide dosimetric advantages for treating superficial or complex anatomy, but currently available fabrication technology is expensive or impractical for most clinical operations and yields compensators that are difficult for patients to tolerate. We aimed to develop an inexpensive, clinically feasible workflow for generating patient-specific, soft, custom silicone boluses (SCSBs) for head-and-neck (HN) radiation therapy. Methods and materials: We developed a method using 3-dimensional printed parts for generating SCSBs for the treatment of HN cancers. The clinical workflow for generation of SCSBs was characterized inclusive of patient simulation to treatment in terms of resource time and cost. Dosimetric properties such as percentage depth dose and dose profiles were measured for SCSBs using GaF films. Comprehensive measurements were also conducted on an HN phantom. SCSBs were generated and used for electron or photon based radiation treatments of 7 HN patients with lesions at nose, cheek, eye, or ears. In vivo dose measurements with optically simulated luminescence dosimeters were performed. Results: Total design and fabrication time from patient simulation to radiation treatment start required approximately 1 week, with fabrication constituting 1 to 2 working days depending on bolus surface area, volume, and complexity. Computed tomography and dosimetric properties of the soft bolus were similar to water. In vivo dose measurements on 7 treated patients confirmed that the dose deposition conformed to planned doses. Material costs were lower than currently available hard plastic boluses generated with 3-dimensional printing technology. All treated patients tolerated SCSBs for the duration of therapy. Conclusions: Generation and use of SCSBs for clinical use is feasible and effective for the treatment of HN cancers.

Original languageEnglish (US)
JournalPractical Radiation Oncology
DOIs
StateAccepted/In press - Jan 1 2018

Fingerprint

Silicones
Neck
Radiotherapy
Head
Patient Simulation
Workflow
Head and Neck Neoplasms
Therapeutics
Radiation
Technology
Costs and Cost Analysis
Cheek
Luminescence
Photons
Nose
Plastics
Ear
Anatomy
Tomography
Electrons

ASJC Scopus subject areas

  • Oncology
  • Radiology Nuclear Medicine and imaging

Cite this

Three-dimensional printer-aided casting of soft, custom silicone boluses (SCSBs) for head and neck radiation therapy. / Chiu, Tsuicheng; Tan, Jun; Brenner, Mathew; Gu, Xuejun; Yang, Ming; Westover, Kenneth; Strom, Tobin; Sher, David; Jiang, Steve; Zhao, Bo.

In: Practical Radiation Oncology, 01.01.2018.

Research output: Contribution to journalArticle

@article{865476f2d4a44381a82be23a304220ea,
title = "Three-dimensional printer-aided casting of soft, custom silicone boluses (SCSBs) for head and neck radiation therapy",
abstract = "Purpose: Custom tissue compensators provide dosimetric advantages for treating superficial or complex anatomy, but currently available fabrication technology is expensive or impractical for most clinical operations and yields compensators that are difficult for patients to tolerate. We aimed to develop an inexpensive, clinically feasible workflow for generating patient-specific, soft, custom silicone boluses (SCSBs) for head-and-neck (HN) radiation therapy. Methods and materials: We developed a method using 3-dimensional printed parts for generating SCSBs for the treatment of HN cancers. The clinical workflow for generation of SCSBs was characterized inclusive of patient simulation to treatment in terms of resource time and cost. Dosimetric properties such as percentage depth dose and dose profiles were measured for SCSBs using GaF films. Comprehensive measurements were also conducted on an HN phantom. SCSBs were generated and used for electron or photon based radiation treatments of 7 HN patients with lesions at nose, cheek, eye, or ears. In vivo dose measurements with optically simulated luminescence dosimeters were performed. Results: Total design and fabrication time from patient simulation to radiation treatment start required approximately 1 week, with fabrication constituting 1 to 2 working days depending on bolus surface area, volume, and complexity. Computed tomography and dosimetric properties of the soft bolus were similar to water. In vivo dose measurements on 7 treated patients confirmed that the dose deposition conformed to planned doses. Material costs were lower than currently available hard plastic boluses generated with 3-dimensional printing technology. All treated patients tolerated SCSBs for the duration of therapy. Conclusions: Generation and use of SCSBs for clinical use is feasible and effective for the treatment of HN cancers.",
author = "Tsuicheng Chiu and Jun Tan and Mathew Brenner and Xuejun Gu and Ming Yang and Kenneth Westover and Tobin Strom and David Sher and Steve Jiang and Bo Zhao",
year = "2018",
month = "1",
day = "1",
doi = "10.1016/j.prro.2017.11.001",
language = "English (US)",
journal = "Practical Radiation Oncology",
issn = "1879-8500",
publisher = "Elsevier BV",

}

TY - JOUR

T1 - Three-dimensional printer-aided casting of soft, custom silicone boluses (SCSBs) for head and neck radiation therapy

AU - Chiu, Tsuicheng

AU - Tan, Jun

AU - Brenner, Mathew

AU - Gu, Xuejun

AU - Yang, Ming

AU - Westover, Kenneth

AU - Strom, Tobin

AU - Sher, David

AU - Jiang, Steve

AU - Zhao, Bo

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Purpose: Custom tissue compensators provide dosimetric advantages for treating superficial or complex anatomy, but currently available fabrication technology is expensive or impractical for most clinical operations and yields compensators that are difficult for patients to tolerate. We aimed to develop an inexpensive, clinically feasible workflow for generating patient-specific, soft, custom silicone boluses (SCSBs) for head-and-neck (HN) radiation therapy. Methods and materials: We developed a method using 3-dimensional printed parts for generating SCSBs for the treatment of HN cancers. The clinical workflow for generation of SCSBs was characterized inclusive of patient simulation to treatment in terms of resource time and cost. Dosimetric properties such as percentage depth dose and dose profiles were measured for SCSBs using GaF films. Comprehensive measurements were also conducted on an HN phantom. SCSBs were generated and used for electron or photon based radiation treatments of 7 HN patients with lesions at nose, cheek, eye, or ears. In vivo dose measurements with optically simulated luminescence dosimeters were performed. Results: Total design and fabrication time from patient simulation to radiation treatment start required approximately 1 week, with fabrication constituting 1 to 2 working days depending on bolus surface area, volume, and complexity. Computed tomography and dosimetric properties of the soft bolus were similar to water. In vivo dose measurements on 7 treated patients confirmed that the dose deposition conformed to planned doses. Material costs were lower than currently available hard plastic boluses generated with 3-dimensional printing technology. All treated patients tolerated SCSBs for the duration of therapy. Conclusions: Generation and use of SCSBs for clinical use is feasible and effective for the treatment of HN cancers.

AB - Purpose: Custom tissue compensators provide dosimetric advantages for treating superficial or complex anatomy, but currently available fabrication technology is expensive or impractical for most clinical operations and yields compensators that are difficult for patients to tolerate. We aimed to develop an inexpensive, clinically feasible workflow for generating patient-specific, soft, custom silicone boluses (SCSBs) for head-and-neck (HN) radiation therapy. Methods and materials: We developed a method using 3-dimensional printed parts for generating SCSBs for the treatment of HN cancers. The clinical workflow for generation of SCSBs was characterized inclusive of patient simulation to treatment in terms of resource time and cost. Dosimetric properties such as percentage depth dose and dose profiles were measured for SCSBs using GaF films. Comprehensive measurements were also conducted on an HN phantom. SCSBs were generated and used for electron or photon based radiation treatments of 7 HN patients with lesions at nose, cheek, eye, or ears. In vivo dose measurements with optically simulated luminescence dosimeters were performed. Results: Total design and fabrication time from patient simulation to radiation treatment start required approximately 1 week, with fabrication constituting 1 to 2 working days depending on bolus surface area, volume, and complexity. Computed tomography and dosimetric properties of the soft bolus were similar to water. In vivo dose measurements on 7 treated patients confirmed that the dose deposition conformed to planned doses. Material costs were lower than currently available hard plastic boluses generated with 3-dimensional printing technology. All treated patients tolerated SCSBs for the duration of therapy. Conclusions: Generation and use of SCSBs for clinical use is feasible and effective for the treatment of HN cancers.

UR - http://www.scopus.com/inward/record.url?scp=85041953524&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85041953524&partnerID=8YFLogxK

U2 - 10.1016/j.prro.2017.11.001

DO - 10.1016/j.prro.2017.11.001

M3 - Article

C2 - 29452869

AN - SCOPUS:85041953524

JO - Practical Radiation Oncology

JF - Practical Radiation Oncology

SN - 1879-8500

ER -