Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver

N. Bansal, M. J. Germann, V. Seshan, G. T. Shires, C. R. Malloy, A. D. Sherry

Research output: Contribution to journalArticle

93 Citations (Scopus)

Abstract

The use of thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate (TmDOTP5-) as an in vivo 23Na NMR shift reagent for rat liver was evaluated by collecting interleaved 23Na and 31P spectra. Infusion of 80 mM TmDOTP5- without added Ca2+ produced baseline-resolved peaks from intra- and extracellular sodium without producing any changes in phosphate metabolite resonances or intracellular pH. Several key physiological parameters measured in parallel groups of animals confirmed that liver physiology is largely unaffected by this shift reagent. A direct comparison of TmDOTP5- versus DyTTHA3- showed that after infusion of 5-8 times more DyTTHA3-, the extracellular sodium peak shifted by the same amount as with TmDOTP5-, but the two 23Na resonances were very broad and not resolved. The baseline-resolved peaks with TmDOTP5- allowed us to measure the in vivo T1 and T2 relaxation characteristics of intra- and extracellular Na+. The measured T1, T2s, and T2f values and the relative contributions from the slow and fast T2 components for intracellular Na+ in liver did not differ significantly from the values reported for perfused frog heart. The T1 and T2 relaxation curves of the extracellular Na+ resonances fit a monoexponential function. Analysis of the relative contribution of the fast- and slow-relaxing T2 components from intracellular Na+ resulted in a calculated visibility factor of 69 ± 4% and the intracellular Na+ concentration calculated from the NMR peak intensity ratio, the measured visibility factor, and literature values of intra- and extracellular volume was 19 mM. These results indicate that TmDOTP5- promises to be quite useful as an in vivo shift reagent for liver and other organs.

Original languageEnglish (US)
Pages (from-to)5638-5643
Number of pages6
JournalBiochemistry
Volume32
Issue number21
StatePublished - 1993

Fingerprint

Thulium
Organophosphonates
Liver
Rats
Visibility
Sodium
Nuclear magnetic resonance
Physiology
Metabolites
Anura
Animals
Phosphates
cyclen

ASJC Scopus subject areas

  • Biochemistry

Cite this

Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver. / Bansal, N.; Germann, M. J.; Seshan, V.; Shires, G. T.; Malloy, C. R.; Sherry, A. D.

In: Biochemistry, Vol. 32, No. 21, 1993, p. 5638-5643.

Research output: Contribution to journalArticle

@article{a6b8b66511404a818c8a1e17876b2945,
title = "Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver",
abstract = "The use of thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate (TmDOTP5-) as an in vivo 23Na NMR shift reagent for rat liver was evaluated by collecting interleaved 23Na and 31P spectra. Infusion of 80 mM TmDOTP5- without added Ca2+ produced baseline-resolved peaks from intra- and extracellular sodium without producing any changes in phosphate metabolite resonances or intracellular pH. Several key physiological parameters measured in parallel groups of animals confirmed that liver physiology is largely unaffected by this shift reagent. A direct comparison of TmDOTP5- versus DyTTHA3- showed that after infusion of 5-8 times more DyTTHA3-, the extracellular sodium peak shifted by the same amount as with TmDOTP5-, but the two 23Na resonances were very broad and not resolved. The baseline-resolved peaks with TmDOTP5- allowed us to measure the in vivo T1 and T2 relaxation characteristics of intra- and extracellular Na+. The measured T1, T2s, and T2f values and the relative contributions from the slow and fast T2 components for intracellular Na+ in liver did not differ significantly from the values reported for perfused frog heart. The T1 and T2 relaxation curves of the extracellular Na+ resonances fit a monoexponential function. Analysis of the relative contribution of the fast- and slow-relaxing T2 components from intracellular Na+ resulted in a calculated visibility factor of 69 ± 4{\%} and the intracellular Na+ concentration calculated from the NMR peak intensity ratio, the measured visibility factor, and literature values of intra- and extracellular volume was 19 mM. These results indicate that TmDOTP5- promises to be quite useful as an in vivo shift reagent for liver and other organs.",
author = "N. Bansal and Germann, {M. J.} and V. Seshan and Shires, {G. T.} and Malloy, {C. R.} and Sherry, {A. D.}",
year = "1993",
language = "English (US)",
volume = "32",
pages = "5638--5643",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "21",

}

TY - JOUR

T1 - Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver

AU - Bansal, N.

AU - Germann, M. J.

AU - Seshan, V.

AU - Shires, G. T.

AU - Malloy, C. R.

AU - Sherry, A. D.

PY - 1993

Y1 - 1993

N2 - The use of thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate (TmDOTP5-) as an in vivo 23Na NMR shift reagent for rat liver was evaluated by collecting interleaved 23Na and 31P spectra. Infusion of 80 mM TmDOTP5- without added Ca2+ produced baseline-resolved peaks from intra- and extracellular sodium without producing any changes in phosphate metabolite resonances or intracellular pH. Several key physiological parameters measured in parallel groups of animals confirmed that liver physiology is largely unaffected by this shift reagent. A direct comparison of TmDOTP5- versus DyTTHA3- showed that after infusion of 5-8 times more DyTTHA3-, the extracellular sodium peak shifted by the same amount as with TmDOTP5-, but the two 23Na resonances were very broad and not resolved. The baseline-resolved peaks with TmDOTP5- allowed us to measure the in vivo T1 and T2 relaxation characteristics of intra- and extracellular Na+. The measured T1, T2s, and T2f values and the relative contributions from the slow and fast T2 components for intracellular Na+ in liver did not differ significantly from the values reported for perfused frog heart. The T1 and T2 relaxation curves of the extracellular Na+ resonances fit a monoexponential function. Analysis of the relative contribution of the fast- and slow-relaxing T2 components from intracellular Na+ resulted in a calculated visibility factor of 69 ± 4% and the intracellular Na+ concentration calculated from the NMR peak intensity ratio, the measured visibility factor, and literature values of intra- and extracellular volume was 19 mM. These results indicate that TmDOTP5- promises to be quite useful as an in vivo shift reagent for liver and other organs.

AB - The use of thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate (TmDOTP5-) as an in vivo 23Na NMR shift reagent for rat liver was evaluated by collecting interleaved 23Na and 31P spectra. Infusion of 80 mM TmDOTP5- without added Ca2+ produced baseline-resolved peaks from intra- and extracellular sodium without producing any changes in phosphate metabolite resonances or intracellular pH. Several key physiological parameters measured in parallel groups of animals confirmed that liver physiology is largely unaffected by this shift reagent. A direct comparison of TmDOTP5- versus DyTTHA3- showed that after infusion of 5-8 times more DyTTHA3-, the extracellular sodium peak shifted by the same amount as with TmDOTP5-, but the two 23Na resonances were very broad and not resolved. The baseline-resolved peaks with TmDOTP5- allowed us to measure the in vivo T1 and T2 relaxation characteristics of intra- and extracellular Na+. The measured T1, T2s, and T2f values and the relative contributions from the slow and fast T2 components for intracellular Na+ in liver did not differ significantly from the values reported for perfused frog heart. The T1 and T2 relaxation curves of the extracellular Na+ resonances fit a monoexponential function. Analysis of the relative contribution of the fast- and slow-relaxing T2 components from intracellular Na+ resulted in a calculated visibility factor of 69 ± 4% and the intracellular Na+ concentration calculated from the NMR peak intensity ratio, the measured visibility factor, and literature values of intra- and extracellular volume was 19 mM. These results indicate that TmDOTP5- promises to be quite useful as an in vivo shift reagent for liver and other organs.

UR - http://www.scopus.com/inward/record.url?scp=0027174469&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027174469&partnerID=8YFLogxK

M3 - Article

VL - 32

SP - 5638

EP - 5643

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 21

ER -