Tissue-specific expression of kallikrein family transgenes in mice and rats

M. S. Smith, J. Lechago, D. R. Wines, Raymond J MacDonald, Robert E Hammer

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

To define the regulatory strategy for the transcriptional control of the kallikrein multigene family, we analyzed the expression of several kallikrein/SV40 T-antigen (TAg) fusion genes in transgenic mice and rats. Kallikrein family members are normally expressed at a high level in the submandibular gland and are expressed in a wide range of tissues that vary among individual family members. A total of 1.7 kb of proximal 5'-flanking DNA from the tissue kallikrein gene (rKlk1) was sufficient to confer much of the correct tissue-specific pattern on a TAg reporter gene. TAg mRNA was detectable in tissues that normally express rKlk1 and TAg-induced tumors arose in brain and pancreas. However, absolute levels of transgene mRNA were very low relative to the expression of the normal endogenous tissue kallikrein gene. In particular, expression in the salivary glands, normally very high for endogenous rKlk1, was either low or absent. An intact rKlk1 transgene with extensive flanking DNA (4.5 kb 5' and 4.7 kb 3') and complete intragenic (4 kb) sequences was expressed similarly to the fusion transgene, demonstrating that regulatory elements necessary for comprehensively correct expression are not contained within these additional gene regions. Two additional kallikrein/SV40 fusion transgenes were derived from other family members, one from the rKlk2 gene, which encodes tonin, and another from the rKlk8 gene, which encodes a prostate kallikrein. Whereas the endogenous rKlk2 and rKlk8 genes normally are expressed at high levels in rat salivary glands, they were not expressed in the salivary glands as transgenes. The results for these transgenes of three different family members indicate that control elements that direct the particular nonsalivary gland expression pattern characteristic of each family member may be present within the proximal 5'- flanking region of each gene, whereas regulatory sequences necessary for normal levels of expression in these tissues and for maximal salivary gland expression are not. We propose that the gene-associated regulatory sequences are complemented by a dominant control region that imposes salivary gland expression on the extended kallikrein family locus.

Original languageEnglish (US)
Pages (from-to)345-358
Number of pages14
JournalDNA and Cell Biology
Volume11
Issue number5
StatePublished - 1992

Fingerprint

Kallikreins
Transgenes
Salivary Glands
Viral Tumor Antigens
Genes
Tissue Kallikreins
Regulator Genes
Transgenic Rats
Polyomavirus Transforming Antigens
Messenger RNA
Submandibular Gland
5' Flanking Region
Gene Fusion
DNA
Multigene Family
Reporter Genes
Transgenic Mice
Prostate
Pancreas
Brain

ASJC Scopus subject areas

  • Cell Biology
  • Genetics
  • Molecular Biology

Cite this

Tissue-specific expression of kallikrein family transgenes in mice and rats. / Smith, M. S.; Lechago, J.; Wines, D. R.; MacDonald, Raymond J; Hammer, Robert E.

In: DNA and Cell Biology, Vol. 11, No. 5, 1992, p. 345-358.

Research output: Contribution to journalArticle

@article{8a405b25a97548e7a99333889c86b348,
title = "Tissue-specific expression of kallikrein family transgenes in mice and rats",
abstract = "To define the regulatory strategy for the transcriptional control of the kallikrein multigene family, we analyzed the expression of several kallikrein/SV40 T-antigen (TAg) fusion genes in transgenic mice and rats. Kallikrein family members are normally expressed at a high level in the submandibular gland and are expressed in a wide range of tissues that vary among individual family members. A total of 1.7 kb of proximal 5'-flanking DNA from the tissue kallikrein gene (rKlk1) was sufficient to confer much of the correct tissue-specific pattern on a TAg reporter gene. TAg mRNA was detectable in tissues that normally express rKlk1 and TAg-induced tumors arose in brain and pancreas. However, absolute levels of transgene mRNA were very low relative to the expression of the normal endogenous tissue kallikrein gene. In particular, expression in the salivary glands, normally very high for endogenous rKlk1, was either low or absent. An intact rKlk1 transgene with extensive flanking DNA (4.5 kb 5' and 4.7 kb 3') and complete intragenic (4 kb) sequences was expressed similarly to the fusion transgene, demonstrating that regulatory elements necessary for comprehensively correct expression are not contained within these additional gene regions. Two additional kallikrein/SV40 fusion transgenes were derived from other family members, one from the rKlk2 gene, which encodes tonin, and another from the rKlk8 gene, which encodes a prostate kallikrein. Whereas the endogenous rKlk2 and rKlk8 genes normally are expressed at high levels in rat salivary glands, they were not expressed in the salivary glands as transgenes. The results for these transgenes of three different family members indicate that control elements that direct the particular nonsalivary gland expression pattern characteristic of each family member may be present within the proximal 5'- flanking region of each gene, whereas regulatory sequences necessary for normal levels of expression in these tissues and for maximal salivary gland expression are not. We propose that the gene-associated regulatory sequences are complemented by a dominant control region that imposes salivary gland expression on the extended kallikrein family locus.",
author = "Smith, {M. S.} and J. Lechago and Wines, {D. R.} and MacDonald, {Raymond J} and Hammer, {Robert E}",
year = "1992",
language = "English (US)",
volume = "11",
pages = "345--358",
journal = "DNA and Cell Biology",
issn = "1044-5498",
publisher = "Mary Ann Liebert Inc.",
number = "5",

}

TY - JOUR

T1 - Tissue-specific expression of kallikrein family transgenes in mice and rats

AU - Smith, M. S.

AU - Lechago, J.

AU - Wines, D. R.

AU - MacDonald, Raymond J

AU - Hammer, Robert E

PY - 1992

Y1 - 1992

N2 - To define the regulatory strategy for the transcriptional control of the kallikrein multigene family, we analyzed the expression of several kallikrein/SV40 T-antigen (TAg) fusion genes in transgenic mice and rats. Kallikrein family members are normally expressed at a high level in the submandibular gland and are expressed in a wide range of tissues that vary among individual family members. A total of 1.7 kb of proximal 5'-flanking DNA from the tissue kallikrein gene (rKlk1) was sufficient to confer much of the correct tissue-specific pattern on a TAg reporter gene. TAg mRNA was detectable in tissues that normally express rKlk1 and TAg-induced tumors arose in brain and pancreas. However, absolute levels of transgene mRNA were very low relative to the expression of the normal endogenous tissue kallikrein gene. In particular, expression in the salivary glands, normally very high for endogenous rKlk1, was either low or absent. An intact rKlk1 transgene with extensive flanking DNA (4.5 kb 5' and 4.7 kb 3') and complete intragenic (4 kb) sequences was expressed similarly to the fusion transgene, demonstrating that regulatory elements necessary for comprehensively correct expression are not contained within these additional gene regions. Two additional kallikrein/SV40 fusion transgenes were derived from other family members, one from the rKlk2 gene, which encodes tonin, and another from the rKlk8 gene, which encodes a prostate kallikrein. Whereas the endogenous rKlk2 and rKlk8 genes normally are expressed at high levels in rat salivary glands, they were not expressed in the salivary glands as transgenes. The results for these transgenes of three different family members indicate that control elements that direct the particular nonsalivary gland expression pattern characteristic of each family member may be present within the proximal 5'- flanking region of each gene, whereas regulatory sequences necessary for normal levels of expression in these tissues and for maximal salivary gland expression are not. We propose that the gene-associated regulatory sequences are complemented by a dominant control region that imposes salivary gland expression on the extended kallikrein family locus.

AB - To define the regulatory strategy for the transcriptional control of the kallikrein multigene family, we analyzed the expression of several kallikrein/SV40 T-antigen (TAg) fusion genes in transgenic mice and rats. Kallikrein family members are normally expressed at a high level in the submandibular gland and are expressed in a wide range of tissues that vary among individual family members. A total of 1.7 kb of proximal 5'-flanking DNA from the tissue kallikrein gene (rKlk1) was sufficient to confer much of the correct tissue-specific pattern on a TAg reporter gene. TAg mRNA was detectable in tissues that normally express rKlk1 and TAg-induced tumors arose in brain and pancreas. However, absolute levels of transgene mRNA were very low relative to the expression of the normal endogenous tissue kallikrein gene. In particular, expression in the salivary glands, normally very high for endogenous rKlk1, was either low or absent. An intact rKlk1 transgene with extensive flanking DNA (4.5 kb 5' and 4.7 kb 3') and complete intragenic (4 kb) sequences was expressed similarly to the fusion transgene, demonstrating that regulatory elements necessary for comprehensively correct expression are not contained within these additional gene regions. Two additional kallikrein/SV40 fusion transgenes were derived from other family members, one from the rKlk2 gene, which encodes tonin, and another from the rKlk8 gene, which encodes a prostate kallikrein. Whereas the endogenous rKlk2 and rKlk8 genes normally are expressed at high levels in rat salivary glands, they were not expressed in the salivary glands as transgenes. The results for these transgenes of three different family members indicate that control elements that direct the particular nonsalivary gland expression pattern characteristic of each family member may be present within the proximal 5'- flanking region of each gene, whereas regulatory sequences necessary for normal levels of expression in these tissues and for maximal salivary gland expression are not. We propose that the gene-associated regulatory sequences are complemented by a dominant control region that imposes salivary gland expression on the extended kallikrein family locus.

UR - http://www.scopus.com/inward/record.url?scp=0026737786&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026737786&partnerID=8YFLogxK

M3 - Article

C2 - 1605858

AN - SCOPUS:0026737786

VL - 11

SP - 345

EP - 358

JO - DNA and Cell Biology

JF - DNA and Cell Biology

SN - 1044-5498

IS - 5

ER -