Tissue-specific responses of IGF-1/insulin and mTOR signaling in calorie restricted rats

Naveen Sharma, Carlos M. Castorena, Gregory D. Cartee

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

Moderate calorie restriction (CR) (~60% of ad libitum, AL, intake) has been associated with numerous favorable physiological outcomes in many species, and the insulin/IGF-1 and mTOR signaling pathways have each been proposed as potential mediators for many of CR's bioeffects. However, few studies have assessed the widely held idea that CR induces the down-regulation of the insulin/IGF-1 and/or mTOR pathways in multiple tissues. Accordingly, we analyzed the phosphorylation status of 11 key signaling proteins from the insulin/IGF-1 (IRTyr1162/1163, IGF-1RTyr1135/1136, IRS-1Ser312, PTENSer380, AktSer473, GSK3αSer21, GSK3βSer9) and mTOR (TSC2Ser939, mTORSer2448, P70S6KThr412, RPS6Ser235/236) pathways in 11 diverse tissues [liver, kidney, lung, aorta, two brain regions (cortex and cerebellum), and two slow-twitch and three fast-twitch skeletal muscles] from 9-month-old male AL and CR Fischer 344 x Brown Norway rats. The rats were studied under two conditions: with endogenous insulin levels (i.e., AL>CR) and with insulin infused during a hyperinsulinemic-euglycemic clamp so that plasma insulin concentrations were matched between the two diet groups. The most striking and consistent effect of CR was greater pAkt in 3 of the 5 skeletal muscles of CR vs. AL rats. There were no significant CR effects on the mTOR signaling pathway and no evidence that CR caused a general attenuation of mTOR signaling across the tissues studied. Rather than supporting the premise of a global downregulation of insulin/IGF-1 and/or mTOR signaling in many tissues, the current results revealed clear tissue-specific CR effects for the insulin signaling pathway without CR effects on the mTOR signaling pathway.

Original languageEnglish (US)
Article numbere38835
JournalPloS one
Volume7
Issue number6
DOIs
StatePublished - Jun 6 2012
Externally publishedYes

Fingerprint

Insulin-Like Growth Factor I
Rats
insulin
Insulin
Tissue
rats
Muscle
skeletal muscle
Skeletal Muscle
Down-Regulation
Phosphorylation
Glucose Clamp Technique
tissues
Rattus norvegicus
Clamping devices
cerebellum
Nutrition
aorta
Liver
Cerebellum

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Tissue-specific responses of IGF-1/insulin and mTOR signaling in calorie restricted rats. / Sharma, Naveen; Castorena, Carlos M.; Cartee, Gregory D.

In: PloS one, Vol. 7, No. 6, e38835, 06.06.2012.

Research output: Contribution to journalArticle

@article{aab0b2adf18142b5822e08544eec005e,
title = "Tissue-specific responses of IGF-1/insulin and mTOR signaling in calorie restricted rats",
abstract = "Moderate calorie restriction (CR) (~60{\%} of ad libitum, AL, intake) has been associated with numerous favorable physiological outcomes in many species, and the insulin/IGF-1 and mTOR signaling pathways have each been proposed as potential mediators for many of CR's bioeffects. However, few studies have assessed the widely held idea that CR induces the down-regulation of the insulin/IGF-1 and/or mTOR pathways in multiple tissues. Accordingly, we analyzed the phosphorylation status of 11 key signaling proteins from the insulin/IGF-1 (IRTyr1162/1163, IGF-1RTyr1135/1136, IRS-1Ser312, PTENSer380, AktSer473, GSK3αSer21, GSK3βSer9) and mTOR (TSC2Ser939, mTORSer2448, P70S6KThr412, RPS6Ser235/236) pathways in 11 diverse tissues [liver, kidney, lung, aorta, two brain regions (cortex and cerebellum), and two slow-twitch and three fast-twitch skeletal muscles] from 9-month-old male AL and CR Fischer 344 x Brown Norway rats. The rats were studied under two conditions: with endogenous insulin levels (i.e., AL>CR) and with insulin infused during a hyperinsulinemic-euglycemic clamp so that plasma insulin concentrations were matched between the two diet groups. The most striking and consistent effect of CR was greater pAkt in 3 of the 5 skeletal muscles of CR vs. AL rats. There were no significant CR effects on the mTOR signaling pathway and no evidence that CR caused a general attenuation of mTOR signaling across the tissues studied. Rather than supporting the premise of a global downregulation of insulin/IGF-1 and/or mTOR signaling in many tissues, the current results revealed clear tissue-specific CR effects for the insulin signaling pathway without CR effects on the mTOR signaling pathway.",
author = "Naveen Sharma and Castorena, {Carlos M.} and Cartee, {Gregory D.}",
year = "2012",
month = "6",
day = "6",
doi = "10.1371/journal.pone.0038835",
language = "English (US)",
volume = "7",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "6",

}

TY - JOUR

T1 - Tissue-specific responses of IGF-1/insulin and mTOR signaling in calorie restricted rats

AU - Sharma, Naveen

AU - Castorena, Carlos M.

AU - Cartee, Gregory D.

PY - 2012/6/6

Y1 - 2012/6/6

N2 - Moderate calorie restriction (CR) (~60% of ad libitum, AL, intake) has been associated with numerous favorable physiological outcomes in many species, and the insulin/IGF-1 and mTOR signaling pathways have each been proposed as potential mediators for many of CR's bioeffects. However, few studies have assessed the widely held idea that CR induces the down-regulation of the insulin/IGF-1 and/or mTOR pathways in multiple tissues. Accordingly, we analyzed the phosphorylation status of 11 key signaling proteins from the insulin/IGF-1 (IRTyr1162/1163, IGF-1RTyr1135/1136, IRS-1Ser312, PTENSer380, AktSer473, GSK3αSer21, GSK3βSer9) and mTOR (TSC2Ser939, mTORSer2448, P70S6KThr412, RPS6Ser235/236) pathways in 11 diverse tissues [liver, kidney, lung, aorta, two brain regions (cortex and cerebellum), and two slow-twitch and three fast-twitch skeletal muscles] from 9-month-old male AL and CR Fischer 344 x Brown Norway rats. The rats were studied under two conditions: with endogenous insulin levels (i.e., AL>CR) and with insulin infused during a hyperinsulinemic-euglycemic clamp so that plasma insulin concentrations were matched between the two diet groups. The most striking and consistent effect of CR was greater pAkt in 3 of the 5 skeletal muscles of CR vs. AL rats. There were no significant CR effects on the mTOR signaling pathway and no evidence that CR caused a general attenuation of mTOR signaling across the tissues studied. Rather than supporting the premise of a global downregulation of insulin/IGF-1 and/or mTOR signaling in many tissues, the current results revealed clear tissue-specific CR effects for the insulin signaling pathway without CR effects on the mTOR signaling pathway.

AB - Moderate calorie restriction (CR) (~60% of ad libitum, AL, intake) has been associated with numerous favorable physiological outcomes in many species, and the insulin/IGF-1 and mTOR signaling pathways have each been proposed as potential mediators for many of CR's bioeffects. However, few studies have assessed the widely held idea that CR induces the down-regulation of the insulin/IGF-1 and/or mTOR pathways in multiple tissues. Accordingly, we analyzed the phosphorylation status of 11 key signaling proteins from the insulin/IGF-1 (IRTyr1162/1163, IGF-1RTyr1135/1136, IRS-1Ser312, PTENSer380, AktSer473, GSK3αSer21, GSK3βSer9) and mTOR (TSC2Ser939, mTORSer2448, P70S6KThr412, RPS6Ser235/236) pathways in 11 diverse tissues [liver, kidney, lung, aorta, two brain regions (cortex and cerebellum), and two slow-twitch and three fast-twitch skeletal muscles] from 9-month-old male AL and CR Fischer 344 x Brown Norway rats. The rats were studied under two conditions: with endogenous insulin levels (i.e., AL>CR) and with insulin infused during a hyperinsulinemic-euglycemic clamp so that plasma insulin concentrations were matched between the two diet groups. The most striking and consistent effect of CR was greater pAkt in 3 of the 5 skeletal muscles of CR vs. AL rats. There were no significant CR effects on the mTOR signaling pathway and no evidence that CR caused a general attenuation of mTOR signaling across the tissues studied. Rather than supporting the premise of a global downregulation of insulin/IGF-1 and/or mTOR signaling in many tissues, the current results revealed clear tissue-specific CR effects for the insulin signaling pathway without CR effects on the mTOR signaling pathway.

UR - http://www.scopus.com/inward/record.url?scp=84862022050&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84862022050&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0038835

DO - 10.1371/journal.pone.0038835

M3 - Article

C2 - 22701721

AN - SCOPUS:84862022050

VL - 7

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 6

M1 - e38835

ER -