Transcription factor USF2 is developmentally regulated in fetal lung and acts together with USF1 to induce SP-A gene expression

Erwei Gao, Ying Wang, Joseph L. Alcorn, Carole R. Mendelson

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Expression of the pulmonary surfactant protein A (SP-A) gene is lung specific, developmentally regulated, and enhanced by hormones and factors that increase cAMP. We previously identified two E-box-like enhancers termed distal binding element (DBE) and proximal binding element (PBE) in the 5′-flanking region of the rabbit (r) SP-A gene that are essential for cAMP induction of rSP-A promoter activity (Gao E, Alcorn JL, and Mendelson CR. J Biol Chem 268: 19697-19709, 1993). We also found that DBE and PBE serve as binding sites for the basic helix-loop-helix-leucine zipper transcription factor, upstream stimulatory factor-1 (USF1) (Gao E, Wang Y, Alcorn JL, and Mendelson CR. J Biol Chem 272: 23398-23406, 1997). In the present study, PBE was used to screen a rabbit fetal lung cDNA expression library; a cDNA insert encoding the structurally related rabbit upstream stimulatory factor-2 (rUSF2) was isolated. The levels of rUSF2 mRNA reach peak levels in fetal rabbit lung at 28 days of gestation, in concert with the time of maximal induction of SP-A gene transcription. In yeast two-hybrid analysis, rUSF2 was found to preferentially form heterodimers, compared with homodimers, with rUSF1. Binding complexes of nuclear proteins isolated from fetal rabbit lung type II cells with the DBE and PBE were supershifted by anti-rUSF2 antibodies. Binding activity was enriched in nuclear proteins from type II cells compared with fibroblasts. Overexpression of rUSF2 in transfected lung A549 cells increased rSP-A promoter activity and acted synergistically with rUSF1. We suggest that heterodimers of USF2 and USF1 bound to two E-box elements in the SP-A gene 5′-flanking region serve a key role in developmental and hormonal regulation of SP-A gene expression in pulmonary type II cells.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Volume284
Issue number6 28-6
StatePublished - Jun 1 2003

Fingerprint

Upstream Stimulatory Factors
Pulmonary Surfactant-Associated Protein A
Transcription Factors
Rabbits
Gene Expression
Lung
5' Flanking Region
Nuclear Proteins
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
Pulmonary Surfactant-Associated Proteins
E-Box Elements
Genes
Essential Genes
Gene Library
Complementary DNA
Fibroblasts
Yeasts
Binding Sites

Keywords

  • Development
  • E-box
  • Gene expression
  • Regulation
  • Surfactant protein A
  • Type II cells
  • Upstream stimulatory factor

ASJC Scopus subject areas

  • Pulmonary and Respiratory Medicine
  • Cell Biology
  • Physiology

Cite this

@article{edce90a5a96a41c1a40f5c2816eccd82,
title = "Transcription factor USF2 is developmentally regulated in fetal lung and acts together with USF1 to induce SP-A gene expression",
abstract = "Expression of the pulmonary surfactant protein A (SP-A) gene is lung specific, developmentally regulated, and enhanced by hormones and factors that increase cAMP. We previously identified two E-box-like enhancers termed distal binding element (DBE) and proximal binding element (PBE) in the 5′-flanking region of the rabbit (r) SP-A gene that are essential for cAMP induction of rSP-A promoter activity (Gao E, Alcorn JL, and Mendelson CR. J Biol Chem 268: 19697-19709, 1993). We also found that DBE and PBE serve as binding sites for the basic helix-loop-helix-leucine zipper transcription factor, upstream stimulatory factor-1 (USF1) (Gao E, Wang Y, Alcorn JL, and Mendelson CR. J Biol Chem 272: 23398-23406, 1997). In the present study, PBE was used to screen a rabbit fetal lung cDNA expression library; a cDNA insert encoding the structurally related rabbit upstream stimulatory factor-2 (rUSF2) was isolated. The levels of rUSF2 mRNA reach peak levels in fetal rabbit lung at 28 days of gestation, in concert with the time of maximal induction of SP-A gene transcription. In yeast two-hybrid analysis, rUSF2 was found to preferentially form heterodimers, compared with homodimers, with rUSF1. Binding complexes of nuclear proteins isolated from fetal rabbit lung type II cells with the DBE and PBE were supershifted by anti-rUSF2 antibodies. Binding activity was enriched in nuclear proteins from type II cells compared with fibroblasts. Overexpression of rUSF2 in transfected lung A549 cells increased rSP-A promoter activity and acted synergistically with rUSF1. We suggest that heterodimers of USF2 and USF1 bound to two E-box elements in the SP-A gene 5′-flanking region serve a key role in developmental and hormonal regulation of SP-A gene expression in pulmonary type II cells.",
keywords = "Development, E-box, Gene expression, Regulation, Surfactant protein A, Type II cells, Upstream stimulatory factor",
author = "Erwei Gao and Ying Wang and Alcorn, {Joseph L.} and Mendelson, {Carole R.}",
year = "2003",
month = "6",
day = "1",
language = "English (US)",
volume = "284",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "6 28-6",

}

TY - JOUR

T1 - Transcription factor USF2 is developmentally regulated in fetal lung and acts together with USF1 to induce SP-A gene expression

AU - Gao, Erwei

AU - Wang, Ying

AU - Alcorn, Joseph L.

AU - Mendelson, Carole R.

PY - 2003/6/1

Y1 - 2003/6/1

N2 - Expression of the pulmonary surfactant protein A (SP-A) gene is lung specific, developmentally regulated, and enhanced by hormones and factors that increase cAMP. We previously identified two E-box-like enhancers termed distal binding element (DBE) and proximal binding element (PBE) in the 5′-flanking region of the rabbit (r) SP-A gene that are essential for cAMP induction of rSP-A promoter activity (Gao E, Alcorn JL, and Mendelson CR. J Biol Chem 268: 19697-19709, 1993). We also found that DBE and PBE serve as binding sites for the basic helix-loop-helix-leucine zipper transcription factor, upstream stimulatory factor-1 (USF1) (Gao E, Wang Y, Alcorn JL, and Mendelson CR. J Biol Chem 272: 23398-23406, 1997). In the present study, PBE was used to screen a rabbit fetal lung cDNA expression library; a cDNA insert encoding the structurally related rabbit upstream stimulatory factor-2 (rUSF2) was isolated. The levels of rUSF2 mRNA reach peak levels in fetal rabbit lung at 28 days of gestation, in concert with the time of maximal induction of SP-A gene transcription. In yeast two-hybrid analysis, rUSF2 was found to preferentially form heterodimers, compared with homodimers, with rUSF1. Binding complexes of nuclear proteins isolated from fetal rabbit lung type II cells with the DBE and PBE were supershifted by anti-rUSF2 antibodies. Binding activity was enriched in nuclear proteins from type II cells compared with fibroblasts. Overexpression of rUSF2 in transfected lung A549 cells increased rSP-A promoter activity and acted synergistically with rUSF1. We suggest that heterodimers of USF2 and USF1 bound to two E-box elements in the SP-A gene 5′-flanking region serve a key role in developmental and hormonal regulation of SP-A gene expression in pulmonary type II cells.

AB - Expression of the pulmonary surfactant protein A (SP-A) gene is lung specific, developmentally regulated, and enhanced by hormones and factors that increase cAMP. We previously identified two E-box-like enhancers termed distal binding element (DBE) and proximal binding element (PBE) in the 5′-flanking region of the rabbit (r) SP-A gene that are essential for cAMP induction of rSP-A promoter activity (Gao E, Alcorn JL, and Mendelson CR. J Biol Chem 268: 19697-19709, 1993). We also found that DBE and PBE serve as binding sites for the basic helix-loop-helix-leucine zipper transcription factor, upstream stimulatory factor-1 (USF1) (Gao E, Wang Y, Alcorn JL, and Mendelson CR. J Biol Chem 272: 23398-23406, 1997). In the present study, PBE was used to screen a rabbit fetal lung cDNA expression library; a cDNA insert encoding the structurally related rabbit upstream stimulatory factor-2 (rUSF2) was isolated. The levels of rUSF2 mRNA reach peak levels in fetal rabbit lung at 28 days of gestation, in concert with the time of maximal induction of SP-A gene transcription. In yeast two-hybrid analysis, rUSF2 was found to preferentially form heterodimers, compared with homodimers, with rUSF1. Binding complexes of nuclear proteins isolated from fetal rabbit lung type II cells with the DBE and PBE were supershifted by anti-rUSF2 antibodies. Binding activity was enriched in nuclear proteins from type II cells compared with fibroblasts. Overexpression of rUSF2 in transfected lung A549 cells increased rSP-A promoter activity and acted synergistically with rUSF1. We suggest that heterodimers of USF2 and USF1 bound to two E-box elements in the SP-A gene 5′-flanking region serve a key role in developmental and hormonal regulation of SP-A gene expression in pulmonary type II cells.

KW - Development

KW - E-box

KW - Gene expression

KW - Regulation

KW - Surfactant protein A

KW - Type II cells

KW - Upstream stimulatory factor

UR - http://www.scopus.com/inward/record.url?scp=0038511362&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038511362&partnerID=8YFLogxK

M3 - Article

VL - 284

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 6 28-6

ER -