Transcriptional regulation of the thyrotropin-releasing hormone gene by leptin and melanocortin signaling

Mark Harris, Carl Aschkenasi, Carol F. Elias, Annie Chandrankunnel, Eduardo A. Nillni, Christian Bjørbæk, Joel K. Elmquist, Jeffrey S. Flier, Anthony N. Hollenberg

Research output: Contribution to journalArticlepeer-review

282 Scopus citations

Abstract

Starvation causes a rapid reduction in thyroid hormone levels in rodents. This adaptive response is caused by a reduction in thyrotropin-releasing hormone (TRH) expression that can be reversed by the administration of leptin. Here we examined hypothalamic signaling pathways engaged by leptin to upregulate TRH gene expression. As assessed by leptin-induced expression of suppressor of cytokine signaling-3 (SOCS-3) in fasted rats, TRH neurons in the paraventricular nucleus are activated directly by leptin. To a greater degree, they also contain melanocortin-4 receptors (MC4Rs), implying that leptin can act directly or indirectly by increasing the production of the MC4R ligand, α-melanocyte stimulating hormone (α-MSH), to regulate TRH expression. We further demonstrate that both pathways converge on the TRH promoter. The melanocortin system activates the TRH promoter through the phosphorylation and DNA binding of the cAMP response element binding protein (CREB), and leptin signaling directly regulates the TRH promoter through the phosphorylation of signal transducer and activator of transcription 3 (Stat3). Indeed, a novel Stat-response element in the TRH promoter is necessary for leptin's effect. Thus, the TRH promoter is an ideal target for further characterizing the integration of transcriptional pathways through which leptin acts.

Original languageEnglish (US)
Pages (from-to)111-120
Number of pages10
JournalJournal of Clinical Investigation
Volume107
Issue number1
DOIs
StatePublished - 2001

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Transcriptional regulation of the thyrotropin-releasing hormone gene by leptin and melanocortin signaling'. Together they form a unique fingerprint.

Cite this