Abstract
Transcriptomic deconvolution in cancer and other heterogeneous tissues remains challenging. Available methods lack the ability to estimate both component-specific proportions and expression profiles for individual samples. We present DeMixT, a new tool to deconvolve high dimensional data from mixtures of more than two components. DeMixT implements an iterated conditional mode algorithm and a novel gene-set-based component merging approach to improve accuracy. In a series of experimental validation studies and application to TCGA data, DeMixT showed high accuracy. Improved deconvolution is an important step towards linking tumor transcriptomic data with clinical outcomes. An R package, scripts and data are available: https://github.com/wwylab/DeMixT/.
Original language | English (US) |
---|---|
Journal | Unknown Journal |
DOIs | |
State | Published - Jun 8 2017 |
Externally published | Yes |
Keywords
- computational tool
- head and neck squamous cell carcinoma
- RNA-seq data
- statistical models
- tumor heterogeneity
- tumor-stroma-immune interaction
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Agricultural and Biological Sciences(all)
- Immunology and Microbiology(all)
- Neuroscience(all)
- Pharmacology, Toxicology and Pharmaceutics(all)