Trauma-induced regulation of VHP-1 modulates the cellular response to mechanical stress

Nathan Egge, Sonja L.B. Arneaud, Rene Solano Fonseca, Kielen R. Zuurbier, Jacob McClendon, Peter M. Douglas

Research output: Contribution to journalArticlepeer-review

Abstract

Mechanical stimuli initiate adaptive signal transduction pathways, yet exceeding the cellular capacity to withstand physical stress results in death. The molecular mechanisms underlying trauma-induced degeneration remain unclear. In the nematode C. elegans, we have developed a method to study cellular degeneration in response to mechanical stress caused by blunt force trauma. Herein, we report that physical injury activates the c-Jun kinase, KGB-1, which modulates response elements through the AP-1 transcriptional complex. Among these, we have identified a dual-specificity MAPK phosphatase, VHP-1, as a stress-inducible modulator of neurodegeneration. VHP-1 regulates the transcriptional response to mechanical stress and is itself attenuated by KGB-1-mediated inactivation of a deubiquitinase, MATH-33, and proteasomal degradation. Together, we describe an uncharacterized stress response pathway in C. elegans and identify transcriptional and post-translational components comprising a feedback loop on Jun kinase and phosphatase activity.

Original languageEnglish (US)
Article number1484
JournalNature communications
Volume12
Issue number1
DOIs
StatePublished - Dec 2021

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Trauma-induced regulation of VHP-1 modulates the cellular response to mechanical stress'. Together they form a unique fingerprint.

Cite this