TU‐E‐BRC‐04: Strategies for Real‐Time MR Imaging for Integrated MRI+Linac Systems

A. Sawant, k. Butts Pauly, P. Keall

Research output: Contribution to journalArticle

Abstract

Purpose: Integrated MRI+linac systems can potentially yield complete spatio‐temporal knowledge of the irradiated anatomy during beam‐on — representing the ideal guidance strategy for 4D radiotherapy delivery. In this work, we investigate rapid imaging strategies for such devices to enable real‐time, MR‐guided, motion‐adaptive radiation delivery. Method and Materials: SNR in MR images is described by: SNR μ B0×(Dx×Dy×Dz)× Tacq, where 0 B is the primary field, Dx, Dy and Dz are voxel dimensions and acq T is the acquisition time. We investigated trade‐offs between SNR and two important design and operational parameters for MRI+linac systems — (i) 0 B, which impacts design complexity, and (ii) acq T, which impacts the spatio‐temporal accuracy of real‐time guidance. In the first study, SSFP and SPGR sequences were employed to acquire 3D volumes (1.2 s/volume) and 2D coronal slices (0.3 s/slice) of the thoracic region from five human subjects (1.5T scanner). To simulate lower fieldstrength, image SNR was progressively degraded by adding increasing levels of gaussian noise. A fat deposit on the diaphragm was segmented in the noise‐free and the degraded images and the error in the estimated position was computed. In the second study, faster acquisition through partial k‐space scanning was simulated. A cylindrical water‐filled phantom containing seven oilfilled cylinders was imaged and a progressively increasing number of mid‐frequency phase encode lines were zeroed prior to reconstruction. The centers of oil‐filled cylinders were auromatically segmented in the full and partial k‐space acquisitions, and the positional error was computed with respect to the full k‐space image. Results: Positional errors of the anatomic feature were within 1.5 mm for a factor‐of‐6 SNR degradation, corresponding to B0 = 0.25T. Partial k‐space acquisition could be performed to increase acquisition speed by over a factor of 5, while maintaining sub‐1 mm accuracy. Conclusion: These initial studies indicate the feasibility of low‐field, real‐time MRI for intrafraction motion management using integrated MRI+linac systems.

Original languageEnglish (US)
Pages (from-to)2745
Number of pages1
JournalMedical Physics
Volume36
Issue number6
DOIs
StatePublished - 2009

Fingerprint

Feasibility Studies
Diaphragm
Anatomy
Radiotherapy
Thorax
Fats
Radiation
Equipment and Supplies

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

TU‐E‐BRC‐04 : Strategies for Real‐Time MR Imaging for Integrated MRI+Linac Systems. / Sawant, A.; Pauly, k. Butts; Keall, P.

In: Medical Physics, Vol. 36, No. 6, 2009, p. 2745.

Research output: Contribution to journalArticle

Sawant, A. ; Pauly, k. Butts ; Keall, P. / TU‐E‐BRC‐04 : Strategies for Real‐Time MR Imaging for Integrated MRI+Linac Systems. In: Medical Physics. 2009 ; Vol. 36, No. 6. pp. 2745.
@article{58062339ca404d2f8e8e96a56f14dda7,
title = "TU‐E‐BRC‐04: Strategies for Real‐Time MR Imaging for Integrated MRI+Linac Systems",
abstract = "Purpose: Integrated MRI+linac systems can potentially yield complete spatio‐temporal knowledge of the irradiated anatomy during beam‐on — representing the ideal guidance strategy for 4D radiotherapy delivery. In this work, we investigate rapid imaging strategies for such devices to enable real‐time, MR‐guided, motion‐adaptive radiation delivery. Method and Materials: SNR in MR images is described by: SNR μ B0×(Dx×Dy×Dz)× Tacq, where 0 B is the primary field, Dx, Dy and Dz are voxel dimensions and acq T is the acquisition time. We investigated trade‐offs between SNR and two important design and operational parameters for MRI+linac systems — (i) 0 B, which impacts design complexity, and (ii) acq T, which impacts the spatio‐temporal accuracy of real‐time guidance. In the first study, SSFP and SPGR sequences were employed to acquire 3D volumes (1.2 s/volume) and 2D coronal slices (0.3 s/slice) of the thoracic region from five human subjects (1.5T scanner). To simulate lower fieldstrength, image SNR was progressively degraded by adding increasing levels of gaussian noise. A fat deposit on the diaphragm was segmented in the noise‐free and the degraded images and the error in the estimated position was computed. In the second study, faster acquisition through partial k‐space scanning was simulated. A cylindrical water‐filled phantom containing seven oilfilled cylinders was imaged and a progressively increasing number of mid‐frequency phase encode lines were zeroed prior to reconstruction. The centers of oil‐filled cylinders were auromatically segmented in the full and partial k‐space acquisitions, and the positional error was computed with respect to the full k‐space image. Results: Positional errors of the anatomic feature were within 1.5 mm for a factor‐of‐6 SNR degradation, corresponding to B0 = 0.25T. Partial k‐space acquisition could be performed to increase acquisition speed by over a factor of 5, while maintaining sub‐1 mm accuracy. Conclusion: These initial studies indicate the feasibility of low‐field, real‐time MRI for intrafraction motion management using integrated MRI+linac systems.",
author = "A. Sawant and Pauly, {k. Butts} and P. Keall",
year = "2009",
doi = "10.1118/1.3182418",
language = "English (US)",
volume = "36",
pages = "2745",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "6",

}

TY - JOUR

T1 - TU‐E‐BRC‐04

T2 - Strategies for Real‐Time MR Imaging for Integrated MRI+Linac Systems

AU - Sawant, A.

AU - Pauly, k. Butts

AU - Keall, P.

PY - 2009

Y1 - 2009

N2 - Purpose: Integrated MRI+linac systems can potentially yield complete spatio‐temporal knowledge of the irradiated anatomy during beam‐on — representing the ideal guidance strategy for 4D radiotherapy delivery. In this work, we investigate rapid imaging strategies for such devices to enable real‐time, MR‐guided, motion‐adaptive radiation delivery. Method and Materials: SNR in MR images is described by: SNR μ B0×(Dx×Dy×Dz)× Tacq, where 0 B is the primary field, Dx, Dy and Dz are voxel dimensions and acq T is the acquisition time. We investigated trade‐offs between SNR and two important design and operational parameters for MRI+linac systems — (i) 0 B, which impacts design complexity, and (ii) acq T, which impacts the spatio‐temporal accuracy of real‐time guidance. In the first study, SSFP and SPGR sequences were employed to acquire 3D volumes (1.2 s/volume) and 2D coronal slices (0.3 s/slice) of the thoracic region from five human subjects (1.5T scanner). To simulate lower fieldstrength, image SNR was progressively degraded by adding increasing levels of gaussian noise. A fat deposit on the diaphragm was segmented in the noise‐free and the degraded images and the error in the estimated position was computed. In the second study, faster acquisition through partial k‐space scanning was simulated. A cylindrical water‐filled phantom containing seven oilfilled cylinders was imaged and a progressively increasing number of mid‐frequency phase encode lines were zeroed prior to reconstruction. The centers of oil‐filled cylinders were auromatically segmented in the full and partial k‐space acquisitions, and the positional error was computed with respect to the full k‐space image. Results: Positional errors of the anatomic feature were within 1.5 mm for a factor‐of‐6 SNR degradation, corresponding to B0 = 0.25T. Partial k‐space acquisition could be performed to increase acquisition speed by over a factor of 5, while maintaining sub‐1 mm accuracy. Conclusion: These initial studies indicate the feasibility of low‐field, real‐time MRI for intrafraction motion management using integrated MRI+linac systems.

AB - Purpose: Integrated MRI+linac systems can potentially yield complete spatio‐temporal knowledge of the irradiated anatomy during beam‐on — representing the ideal guidance strategy for 4D radiotherapy delivery. In this work, we investigate rapid imaging strategies for such devices to enable real‐time, MR‐guided, motion‐adaptive radiation delivery. Method and Materials: SNR in MR images is described by: SNR μ B0×(Dx×Dy×Dz)× Tacq, where 0 B is the primary field, Dx, Dy and Dz are voxel dimensions and acq T is the acquisition time. We investigated trade‐offs between SNR and two important design and operational parameters for MRI+linac systems — (i) 0 B, which impacts design complexity, and (ii) acq T, which impacts the spatio‐temporal accuracy of real‐time guidance. In the first study, SSFP and SPGR sequences were employed to acquire 3D volumes (1.2 s/volume) and 2D coronal slices (0.3 s/slice) of the thoracic region from five human subjects (1.5T scanner). To simulate lower fieldstrength, image SNR was progressively degraded by adding increasing levels of gaussian noise. A fat deposit on the diaphragm was segmented in the noise‐free and the degraded images and the error in the estimated position was computed. In the second study, faster acquisition through partial k‐space scanning was simulated. A cylindrical water‐filled phantom containing seven oilfilled cylinders was imaged and a progressively increasing number of mid‐frequency phase encode lines were zeroed prior to reconstruction. The centers of oil‐filled cylinders were auromatically segmented in the full and partial k‐space acquisitions, and the positional error was computed with respect to the full k‐space image. Results: Positional errors of the anatomic feature were within 1.5 mm for a factor‐of‐6 SNR degradation, corresponding to B0 = 0.25T. Partial k‐space acquisition could be performed to increase acquisition speed by over a factor of 5, while maintaining sub‐1 mm accuracy. Conclusion: These initial studies indicate the feasibility of low‐field, real‐time MRI for intrafraction motion management using integrated MRI+linac systems.

UR - http://www.scopus.com/inward/record.url?scp=85024783873&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85024783873&partnerID=8YFLogxK

U2 - 10.1118/1.3182418

DO - 10.1118/1.3182418

M3 - Article

AN - SCOPUS:85024783873

VL - 36

SP - 2745

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 6

ER -