Tumor margin classification of head and neck cancer using hyperspectral imaging and convolutional neural networks

Martin Halicek, James V. Little, Xu Wang, Mihir Patel, Christopher C. Griffith, Amy Y. Chen, Baowei Fei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

One of the largest factors affecting disease recurrence after surgical cancer resection is negative surgical margins. Hyperspectral imaging (HSI) is an optical imaging technique with potential to serve as a computer aided diagnostic tool for identifying cancer in gross ex-vivo specimens. We developed a tissue classifier using three distinct convolutional neural network (CNN) architectures on HSI data to investigate the ability to classify the cancer margins from ex-vivo human surgical specimens, collected from 20 patients undergoing surgical cancer resection as a preliminary validation group. A new approach for generating the HSI ground truth using a registered histological cancer margin is applied in order to create a validation dataset. The CNN-based method classifies the tumor-normal margin of squamous cell carcinoma (SCCa) versus normal oral tissue with an area under the curve (AUC) of 0.86 for inter-patient validation, performing with 81% accuracy, 84% sensitivity, and 77% specificity. Thyroid carcinoma cancer-normal margins are classified with an AUC of 0.94 for inter-patient validation, performing with 90% accuracy, 91% sensitivity, and 88% specificity. Our preliminary results on a limited patient dataset demonstrate the predictive ability of HSI-based cancer margin detection, which warrants further investigation with more patient data and additional processing techniques to optimize the proposed deep learning method.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2018
Subtitle of host publicationImage-Guided Procedures, Robotic Interventions, and Modeling
EditorsBaowei Fei, Robert J. Webster
PublisherSPIE
ISBN (Electronic)9781510616417
DOIs
StatePublished - 2018
Externally publishedYes
EventMedical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling - Houston, United States
Duration: Feb 12 2018Feb 15 2018

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10576
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling
Country/TerritoryUnited States
CityHouston
Period2/12/182/15/18

Keywords

  • Cancer margin detection
  • Convolutional neural network
  • Deep learning
  • Head and neck cancer
  • Head and neck surgery
  • Hyperspectral imaging
  • In-traoperative imaging

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Tumor margin classification of head and neck cancer using hyperspectral imaging and convolutional neural networks'. Together they form a unique fingerprint.

Cite this