Ubiquitination of 3-hydroxy-3-methylglutaryl-CoA reductase in permeabilized cells mediated by cytosolic E1 and a putative membrane-bound ubiquitin ligase

Bao Liang Song, Russell A. DeBose-Boyd

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

The endoplasmic reticulum (ER) enzyme, 3-hydroxy-3-methylglutaryl-CoA reductase, catalyzes the production of mevalonate, a rate-controlling step in cholesterol biosynthesis. Excess sterols promote ubiquitination and subsequent degradation of reductase as part of a negative feedback regulatory mechanism. To characterize the process in more detail, we here report the development of a permeabilized cell system that supports reductase ubiquitination stimulated by the addition of sterols in vitro. Sterol-dependent ubiquitination of reductase in permeabilized cells is dependent upon exogenous cytosol, ATP, and either Insig-1 or Insig-2, two membrane-bound ER proteins shown previously to mediate sterol regulation of reductase degradation in intact cells. Oxysterols, but not cholesterol, promote reductase ubiquitination under our conditions. Finally, we show that ubiquitin-activating enzyme (E1) can efficiently replace cytosol to ubiquitinate reductase in response to sterol treatment, suggesting that other molecules required for ubiquitination of reductase, such as the ubiquitin-conjugating and -ligating enzymes (E2 and E3), are localized to ER membranes.

Original languageEnglish (US)
Pages (from-to)28798-28806
Number of pages9
JournalJournal of Biological Chemistry
Volume279
Issue number27
DOIs
StatePublished - Jul 2 2004

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Ubiquitination of 3-hydroxy-3-methylglutaryl-CoA reductase in permeabilized cells mediated by cytosolic E1 and a putative membrane-bound ubiquitin ligase'. Together they form a unique fingerprint.

Cite this