Understanding the genetic and molecular pathogenesis of Friedreich's ataxia through animal and cellular models

Alain Martelli, Marek Napierala, Hélène Puccio

Research output: Contribution to journalReview articlepeer-review

63 Scopus citations

Abstract

In 1996, a link was identified between Friedreich's ataxia (FRDA), the most common inherited ataxia in men, and alterations in the gene encoding frataxin (FXN). Initial studies revealed that the disease is caused by a unique, most frequently biallelic, expansion of the GAA sequence in intron 1 of FXN. Since the identification of this link, there has been tremendous progress in understanding frataxin function and the mechanism of FRDA pathology, as well as in developing diagnostics and therapeutic approaches for the disease. These advances were the subject of the 4th International Friedreich's Ataxia Conference held on 5th-7th May in the Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. More than 200 scientists gathered from all over the world to present the results of research spanning all areas of investigation into FRDA (including clinical aspects, FRDA pathogenesis, genetics and epigenetics of the disease, development of new models of FRDA, and drug discovery). This review provides an update on the understanding of frataxin function, developments of animal and cellular models of the disease, and recent advances in trying to uncover potential molecules for therapy.

Original languageEnglish (US)
Pages (from-to)165-176
Number of pages12
JournalDMM Disease Models and Mechanisms
Volume5
Issue number2
DOIs
StatePublished - Mar 2012
Externally publishedYes

ASJC Scopus subject areas

  • Neuroscience (miscellaneous)
  • Medicine (miscellaneous)
  • Immunology and Microbiology (miscellaneous)
  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Understanding the genetic and molecular pathogenesis of Friedreich's ataxia through animal and cellular models'. Together they form a unique fingerprint.

Cite this