WE‐D‐201C‐02: MRI‐Guided Transurethral Diagnosis and Treatment of Localized Prostate Cancer

Research output: Contribution to journalArticle

Abstract

Minimally‐invasive, image‐guided treatments for localized prostate cancer that provide local control with a low side‐effect profile would have a major impact in improving disease management. Accurate localization of disease with imaging coupled with technologies capable of precise treatment could enable evolution of prostate cancer treatment from a whole gland to a more targeted approach. MRI‐guided transurethral ultrasound therapy is such a technology in which high‐intensity ultrasound energy is delivered to the prostate from a device inserted into the urethra. The goal of the treatment is to generate a prescribed spatial pattern of thermal coagulation in the gland. The treatment is performed in a closed‐bore MR imager to obtain quantitative temperature maps during ultrasound heating of the prostate. This temperature information is used by the treatment delivery system to adapt the exposure conditions dynamically during treatment to compensate for changes in blood flow, tissue absorption and thermal conduction. Previous numerical, phantom, and canine studies have demonstrated that this approach offers a high degree of spatial treatment accuracy (±1–2 mm). Recent clinical evaluation of the technology has confirmed the feasibility of performing this treatment in humans. The desire to deliver more targeted treatments in the prostate for reduced morbidity requires accurate localization of disease, ideally with medical imaging. A unique opportunity that exists in transurethral ultrasound therapy is to generate shear waves in the adjacent prostate gland through vibration of the device. These shear waves can be imaged with MRI and quantitative stiffness maps can be calculated for localization of disease, or evaluation of the pattern of thermal coagulation in the gland. Initial experiments have been performed in phantoms and canines to explore the feasibility of this concept. This presentation will introduce the concept of transurethral ultrasound therapy and will review the results obtained with this technology. In addition the potential to combine this therapy with diagnostic approaches such as MR elastography will be discussed. Learning Objectives: 1. Describe the role of high‐intensity ultrasound therapy for prostate cancer treatment. 2. Describe the technology for transurethral ultrasound therapy 3. Explain the potential role of prostate MR elastography for prostate imaging/diagnosis using transurethral devices 4. Describe the potential of quantitative MR temperature feedback in achieving closed‐loop heating in vivo, and challenges in its implementation.

Original languageEnglish (US)
Pages (from-to)3431-3432
Number of pages2
JournalMedical Physics
Volume37
Issue number6
DOIs
StatePublished - 2010

Fingerprint

Prostate
Prostatic Neoplasms
Technology
Elasticity Imaging Techniques
Hot Temperature
Equipment and Supplies
Heating
Temperature
Canidae
Therapeutics
Urethra
Diagnostic Imaging
Disease Management
Vibration
Learning
Morbidity

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

WE‐D‐201C‐02 : MRI‐Guided Transurethral Diagnosis and Treatment of Localized Prostate Cancer. / Chopra, R.

In: Medical Physics, Vol. 37, No. 6, 2010, p. 3431-3432.

Research output: Contribution to journalArticle

@article{a6fd5bf400694ea59ba1636a9fab5287,
title = "WE‐D‐201C‐02: MRI‐Guided Transurethral Diagnosis and Treatment of Localized Prostate Cancer",
abstract = "Minimally‐invasive, image‐guided treatments for localized prostate cancer that provide local control with a low side‐effect profile would have a major impact in improving disease management. Accurate localization of disease with imaging coupled with technologies capable of precise treatment could enable evolution of prostate cancer treatment from a whole gland to a more targeted approach. MRI‐guided transurethral ultrasound therapy is such a technology in which high‐intensity ultrasound energy is delivered to the prostate from a device inserted into the urethra. The goal of the treatment is to generate a prescribed spatial pattern of thermal coagulation in the gland. The treatment is performed in a closed‐bore MR imager to obtain quantitative temperature maps during ultrasound heating of the prostate. This temperature information is used by the treatment delivery system to adapt the exposure conditions dynamically during treatment to compensate for changes in blood flow, tissue absorption and thermal conduction. Previous numerical, phantom, and canine studies have demonstrated that this approach offers a high degree of spatial treatment accuracy (±1–2 mm). Recent clinical evaluation of the technology has confirmed the feasibility of performing this treatment in humans. The desire to deliver more targeted treatments in the prostate for reduced morbidity requires accurate localization of disease, ideally with medical imaging. A unique opportunity that exists in transurethral ultrasound therapy is to generate shear waves in the adjacent prostate gland through vibration of the device. These shear waves can be imaged with MRI and quantitative stiffness maps can be calculated for localization of disease, or evaluation of the pattern of thermal coagulation in the gland. Initial experiments have been performed in phantoms and canines to explore the feasibility of this concept. This presentation will introduce the concept of transurethral ultrasound therapy and will review the results obtained with this technology. In addition the potential to combine this therapy with diagnostic approaches such as MR elastography will be discussed. Learning Objectives: 1. Describe the role of high‐intensity ultrasound therapy for prostate cancer treatment. 2. Describe the technology for transurethral ultrasound therapy 3. Explain the potential role of prostate MR elastography for prostate imaging/diagnosis using transurethral devices 4. Describe the potential of quantitative MR temperature feedback in achieving closed‐loop heating in vivo, and challenges in its implementation.",
author = "R. Chopra",
year = "2010",
doi = "10.1118/1.3469409",
language = "English (US)",
volume = "37",
pages = "3431--3432",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "6",

}

TY - JOUR

T1 - WE‐D‐201C‐02

T2 - MRI‐Guided Transurethral Diagnosis and Treatment of Localized Prostate Cancer

AU - Chopra, R.

PY - 2010

Y1 - 2010

N2 - Minimally‐invasive, image‐guided treatments for localized prostate cancer that provide local control with a low side‐effect profile would have a major impact in improving disease management. Accurate localization of disease with imaging coupled with technologies capable of precise treatment could enable evolution of prostate cancer treatment from a whole gland to a more targeted approach. MRI‐guided transurethral ultrasound therapy is such a technology in which high‐intensity ultrasound energy is delivered to the prostate from a device inserted into the urethra. The goal of the treatment is to generate a prescribed spatial pattern of thermal coagulation in the gland. The treatment is performed in a closed‐bore MR imager to obtain quantitative temperature maps during ultrasound heating of the prostate. This temperature information is used by the treatment delivery system to adapt the exposure conditions dynamically during treatment to compensate for changes in blood flow, tissue absorption and thermal conduction. Previous numerical, phantom, and canine studies have demonstrated that this approach offers a high degree of spatial treatment accuracy (±1–2 mm). Recent clinical evaluation of the technology has confirmed the feasibility of performing this treatment in humans. The desire to deliver more targeted treatments in the prostate for reduced morbidity requires accurate localization of disease, ideally with medical imaging. A unique opportunity that exists in transurethral ultrasound therapy is to generate shear waves in the adjacent prostate gland through vibration of the device. These shear waves can be imaged with MRI and quantitative stiffness maps can be calculated for localization of disease, or evaluation of the pattern of thermal coagulation in the gland. Initial experiments have been performed in phantoms and canines to explore the feasibility of this concept. This presentation will introduce the concept of transurethral ultrasound therapy and will review the results obtained with this technology. In addition the potential to combine this therapy with diagnostic approaches such as MR elastography will be discussed. Learning Objectives: 1. Describe the role of high‐intensity ultrasound therapy for prostate cancer treatment. 2. Describe the technology for transurethral ultrasound therapy 3. Explain the potential role of prostate MR elastography for prostate imaging/diagnosis using transurethral devices 4. Describe the potential of quantitative MR temperature feedback in achieving closed‐loop heating in vivo, and challenges in its implementation.

AB - Minimally‐invasive, image‐guided treatments for localized prostate cancer that provide local control with a low side‐effect profile would have a major impact in improving disease management. Accurate localization of disease with imaging coupled with technologies capable of precise treatment could enable evolution of prostate cancer treatment from a whole gland to a more targeted approach. MRI‐guided transurethral ultrasound therapy is such a technology in which high‐intensity ultrasound energy is delivered to the prostate from a device inserted into the urethra. The goal of the treatment is to generate a prescribed spatial pattern of thermal coagulation in the gland. The treatment is performed in a closed‐bore MR imager to obtain quantitative temperature maps during ultrasound heating of the prostate. This temperature information is used by the treatment delivery system to adapt the exposure conditions dynamically during treatment to compensate for changes in blood flow, tissue absorption and thermal conduction. Previous numerical, phantom, and canine studies have demonstrated that this approach offers a high degree of spatial treatment accuracy (±1–2 mm). Recent clinical evaluation of the technology has confirmed the feasibility of performing this treatment in humans. The desire to deliver more targeted treatments in the prostate for reduced morbidity requires accurate localization of disease, ideally with medical imaging. A unique opportunity that exists in transurethral ultrasound therapy is to generate shear waves in the adjacent prostate gland through vibration of the device. These shear waves can be imaged with MRI and quantitative stiffness maps can be calculated for localization of disease, or evaluation of the pattern of thermal coagulation in the gland. Initial experiments have been performed in phantoms and canines to explore the feasibility of this concept. This presentation will introduce the concept of transurethral ultrasound therapy and will review the results obtained with this technology. In addition the potential to combine this therapy with diagnostic approaches such as MR elastography will be discussed. Learning Objectives: 1. Describe the role of high‐intensity ultrasound therapy for prostate cancer treatment. 2. Describe the technology for transurethral ultrasound therapy 3. Explain the potential role of prostate MR elastography for prostate imaging/diagnosis using transurethral devices 4. Describe the potential of quantitative MR temperature feedback in achieving closed‐loop heating in vivo, and challenges in its implementation.

UR - http://www.scopus.com/inward/record.url?scp=85024805423&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85024805423&partnerID=8YFLogxK

U2 - 10.1118/1.3469409

DO - 10.1118/1.3469409

M3 - Article

AN - SCOPUS:85024805423

VL - 37

SP - 3431

EP - 3432

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 6

ER -