Worrying drives cell migration in mechanically unrestrained environments

Erik Welf, Meghan K. Driscoll, Etai Sapoznik, Vasanth S. Murali, Andrew Weems, Minna Roh-Johnson, Kevin M. Dean, Reto P Fiolka, Gaudenz Danuser

Research output: Contribution to journalArticlepeer-review

Abstract

Migratory cells employ numerous strategies to navigate the very diverse 3D microenvironments found in vivo. These strategies are subdivided into those that create space by pericellular proteolysis of extracellular matrix (ECM) proteins and those that navigate existing spaces. We find that cells can employ an alternative mechanism by digging tunnels through 3D collagen networks without extracellular proteolysis. This is accomplished by persistent polarization of large dynamic membrane blebs at the closed end of the tunnel that repeatedly agitate the collagen, a process we termed mechanical worrying. We find that this agitation promotes breakage and internalization of collagen at the cell front along with extracellular fluid in a macropinocytosis-driven manner. Membrane blebs are short-lived relative to the timescale of migration, and thus their polarization is critical for persistent ablation of the ECM. We find that sustained interactions between the collagen at the cell front and small but persistent cortical adhesions induce PI-3 Kinase (PI3K) signaling that drives polarized bleb enlargement via the Rac1 – Arp2/3 pathway. This defines a mechanism for the reinforcement of bleb expansion against load, which enables precise ablation of mechanically unrestrained environments, such as those encountered in very compliant tissue.

Original languageEnglish (US)
JournalUnknown Journal
DOIs
StatePublished - Nov 9 2020

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Worrying drives cell migration in mechanically unrestrained environments'. Together they form a unique fingerprint.

Cite this