Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction

Gabriele G. Schiattarella, Francisco Altamirano, Soo Young Kim, Dan Tong, Anwarul Ferdous, Hande Piristine, Subhajit Dasgupta, Xuliang Wang, Kristin M. French, Elisa Villalobos, Stephen B. Spurgin, Maayan Waldman, Nan Jiang, Herman I. May, Theodore M. Hill, Yuxuan Luo, Heesoo Yoo, Vlad G. Zaha, Sergio Lavandero, Thomas G. GilletteJoseph A. Hill

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

Heart failure with preserved ejection fraction (HFpEF) is now the dominant form of heart failure and one for which no efficacious therapies exist. Obesity and lipid mishandling greatly contribute to HFpEF. However, molecular mechanism(s) governing metabolic alterations and perturbations in lipid homeostasis in HFpEF are largely unknown. Here, we report that cardiomyocyte steatosis in HFpEF is coupled with increases in the activity of the transcription factor FoxO1 (Forkhead box protein O1). FoxO1 depletion, as well as over-expression of the Xbp1s (spliced form of the X-box-binding protein 1) arm of the UPR (unfolded protein response) in cardiomyocytes each ameliorates the HFpEF phenotype in mice and reduces myocardial lipid accumulation. Mechanistically, forced expression of Xbp1s in cardiomyocytes triggers ubiquitination and proteasomal degradation of FoxO1 which occurs, in large part, through activation of the E3 ubiquitin ligase STUB1 (STIP1 homology and U-box-containing protein 1) a novel and direct transcriptional target of Xbp1s. Our findings uncover the Xbp1s-FoxO1 axis as a pivotal mechanism in the pathogenesis of cardiometabolic HFpEF and unveil previously unrecognized mechanisms whereby the UPR governs metabolic alterations in cardiomyocytes.

Original languageEnglish (US)
Article number1684
JournalNature communications
Volume12
Issue number1
DOIs
StatePublished - Dec 1 2021

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction'. Together they form a unique fingerprint.

Cite this