A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis

Bo Shen, Alpaslan Tasdogan, Jessalyn M. Ubellacker, Jingzhu Zhang, Elena D. Nosyreva, Liming Du, Malea M. Murphy, Shuiqing Hu, Yating Yi, Nergis Kara, Xin Liu, Shay Guela, Yuemeng Jia, Vijayashree Ramesh, Claire Embree, Evann C. Mitchell, Yunduo C. Zhao, Lining A. Ju, Zhao Hu, Genevieve M. CraneZhiyu Zhao, Ruhma Syeda, Sean J. Morrison

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Stromal cells in adult bone marrow that express leptin receptor (LEPR) are a critical source of growth factors, including stem cell factor (SCF), for the maintenance of haematopoietic stem cells and early restricted progenitors1–6. LEPR+ cells are heterogeneous, including skeletal stem cells and osteogenic and adipogenic progenitors7–12, although few markers have been available to distinguish these subsets or to compare their functions. Here we show that expression of an osteogenic growth factor, osteolectin13,14, distinguishes peri-arteriolar LEPR+ cells poised to undergo osteogenesis from peri-sinusoidal LEPR+ cells poised to undergo adipogenesis (but retaining osteogenic potential). Peri-arteriolar LEPR+osteolectin+ cells are rapidly dividing, short-lived osteogenic progenitors that increase in number after fracture and are depleted during ageing. Deletion of Scf from adult osteolectin+ cells did not affect the maintenance of haematopoietic stem cells or most restricted progenitors but depleted common lymphoid progenitors, impairing lymphopoiesis, bacterial clearance, and survival after acute bacterial infection. Peri-arteriolar osteolectin+ cell maintenance required mechanical stimulation. Voluntary running increased, whereas hindlimb unloading decreased, the frequencies of peri-arteriolar osteolectin+ cells and common lymphoid progenitors. Deletion of the mechanosensitive ion channel PIEZO1 from osteolectin+ cells depleted osteolectin+ cells and common lymphoid progenitors. These results show that a peri-arteriolar niche for osteogenesis and lymphopoiesis in bone marrow is maintained by mechanical stimulation and depleted during ageing.

Original languageEnglish (US)
Pages (from-to)438-444
Number of pages7
JournalNature
Volume591
Issue number7850
DOIs
StatePublished - Mar 18 2021

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis'. Together they form a unique fingerprint.

Cite this