A semiautomatic approach for prostate segmentation in MR images using local texture classification and statistical shape modeling

Maysam Shahedi, Martin Halicek, Qinmei Li, Lizhi Liu, Zhenfeng Zhang, Sadhna Verma, David M. Schuster, Baowei Fei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Segmentation of the prostate in magnetic resonance (MR) images has many applications in image-guided treatment planning and procedures such as biopsy and focal therapy. However, manual delineation of the prostate boundary is a time-consuming task with high inter-observer variation. In this study, we proposed a semiautomated, three-dimensional (3D) prostate segmentation technique for T2-weighted MR images based on shape and texture analysis. The prostate gland shape is usually globular with a smoothly curved surface that could be accurately modeled and reconstructed if the locations of a limited number of well-distributed surface points are known. For a training image set, we used an inter-subject correspondence between the prostate surface points to model the prostate shape variation based on a statistical point distribution modeling. We also studied the local texture difference between prostate and non-prostate tissues close to the prostate surface. To segment a new image, we used the learned prostate shape and texture characteristics to search for the prostate border close to an initially estimated prostate surface. We used 23 MR images for training, and 14 images for testing the algorithm performance. We compared the results to two sets of experts' manual reference segmentations. The measured mean ± standard deviation of error values for the whole gland were 1.4 ± 0.4 mm, 8.5 ± 2.0 mm, and 86 ± 3% in terms of mean absolute distance (MAD), Hausdorff distance (HDist), and Dice similarity coefficient (DSC). The average measured differences between the two experts on the same datasets were 1.5 mm (MAD), 9.0 mm (HDist), and 83% (DSC). The proposed algorithm illustrated a fast, accurate, and robust performance for 3D prostate segmentation. The accuracy of the algorithm is within the inter-expert variability observed in manual segmentation and comparable to the best performance results reported in the literature.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2019
Subtitle of host publicationImage-Guided Procedures, Robotic Interventions, and Modeling
EditorsBaowei Fei, Cristian A. Linte
PublisherSPIE
ISBN (Electronic)9781510625495
DOIs
StatePublished - Jan 1 2019
EventMedical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling - San Diego, United States
Duration: Feb 17 2019Feb 19 2019

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10951
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling
CountryUnited States
CitySan Diego
Period2/17/192/19/19

    Fingerprint

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Cite this

Shahedi, M., Halicek, M., Li, Q., Liu, L., Zhang, Z., Verma, S., Schuster, D. M., & Fei, B. (2019). A semiautomatic approach for prostate segmentation in MR images using local texture classification and statistical shape modeling. In B. Fei, & C. A. Linte (Eds.), Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling [109512I] (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 10951). SPIE. https://doi.org/10.1117/12.2512282