Acid, Bile, and CDX: The ABCs of making Barrett's metaplasia

Research output: Contribution to journalArticle

140 Citations (Scopus)

Abstract

Barrett's esophagus, a squamous-to-columnar cell metaplasia that develops as a result of chronic gastroesophageal reflux disease (GERD), is a risk factor for esophageal adenocarcinoma. The molecular events underlying the pathogenesis of Barrett's metaplasia are poorly understood, but recent studies suggest that interactions among developmental signaling pathways, morphogenetic factors, and Caudal homeobox (Cdx) genes play key roles. Strong expression of Cdx genes normally is found in the intestine but not in the esophagus and stomach. When mice are genetically engineered so that their gastric cells express Cdx, the stomach develops a metaplastic, intestinal-type epithelium similar to that of Barrett's esophagus. Exposure to acid and bile has been shown to activate the Cdx promoter in certain esophageal cell lines, and Cdx expression has been found in inflamed esophageal squamous epithelium and in the specialized intestinal metaplasia of Barrett's esophagus. Barrett's metaplasia must be sustained by stem cells, which might be identified by putative, intestinal stem cell markers like leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and doublecortin and CaM kinase-like-1 (DCAMKL-1). Emerging concepts in tumor biology suggest that Barrett's cancers may develop from growth-promoting mutations in metaplastic stem cells or their progenitor cell progeny. This report reviews the roles of developmental signaling pathways and the Cdx genes in the development of normal gut epithelia and the potential mechanisms whereby GERD may induce the esophageal expression of Cdx genes and other morphogenetic factors that mediate the development of Barrett's metaplasia. The role of stem cells in the development of metaplasia and in carcinogenesis and the potential for therapies directed at those stem cells also is addressed.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume295
Issue number2
DOIs
StatePublished - Aug 2008

Fingerprint

Barrett Esophagus
Bile Acids and Salts
Stem Cells
Metaplasia
Stomach
Gastroesophageal Reflux
Epithelium
Gene Expression
Homeobox Genes
Intestinal Mucosa
G-Protein-Coupled Receptors
Leucine
Esophagus
Intestines
Neoplasms
Carcinogenesis
Adenocarcinoma
Phosphotransferases
Cell Line
Mutation

Keywords

  • Barrett's esophagus
  • Gastroesophageal reflux
  • Molecular
  • Stem cell

ASJC Scopus subject areas

  • Gastroenterology
  • Physiology (medical)
  • Physiology
  • Hepatology

Cite this

@article{00652256d0c84bf281e772e0e17fb41f,
title = "Acid, Bile, and CDX: The ABCs of making Barrett's metaplasia",
abstract = "Barrett's esophagus, a squamous-to-columnar cell metaplasia that develops as a result of chronic gastroesophageal reflux disease (GERD), is a risk factor for esophageal adenocarcinoma. The molecular events underlying the pathogenesis of Barrett's metaplasia are poorly understood, but recent studies suggest that interactions among developmental signaling pathways, morphogenetic factors, and Caudal homeobox (Cdx) genes play key roles. Strong expression of Cdx genes normally is found in the intestine but not in the esophagus and stomach. When mice are genetically engineered so that their gastric cells express Cdx, the stomach develops a metaplastic, intestinal-type epithelium similar to that of Barrett's esophagus. Exposure to acid and bile has been shown to activate the Cdx promoter in certain esophageal cell lines, and Cdx expression has been found in inflamed esophageal squamous epithelium and in the specialized intestinal metaplasia of Barrett's esophagus. Barrett's metaplasia must be sustained by stem cells, which might be identified by putative, intestinal stem cell markers like leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and doublecortin and CaM kinase-like-1 (DCAMKL-1). Emerging concepts in tumor biology suggest that Barrett's cancers may develop from growth-promoting mutations in metaplastic stem cells or their progenitor cell progeny. This report reviews the roles of developmental signaling pathways and the Cdx genes in the development of normal gut epithelia and the potential mechanisms whereby GERD may induce the esophageal expression of Cdx genes and other morphogenetic factors that mediate the development of Barrett's metaplasia. The role of stem cells in the development of metaplasia and in carcinogenesis and the potential for therapies directed at those stem cells also is addressed.",
keywords = "Barrett's esophagus, Gastroesophageal reflux, Molecular, Stem cell",
author = "Souza, {Rhonda F.} and Kumar Krishnan and Spechler, {Stuart Jon}",
year = "2008",
month = "8",
doi = "10.1152/ajpgi.90250.2008",
language = "English (US)",
volume = "295",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "2",

}

TY - JOUR

T1 - Acid, Bile, and CDX

T2 - The ABCs of making Barrett's metaplasia

AU - Souza, Rhonda F.

AU - Krishnan, Kumar

AU - Spechler, Stuart Jon

PY - 2008/8

Y1 - 2008/8

N2 - Barrett's esophagus, a squamous-to-columnar cell metaplasia that develops as a result of chronic gastroesophageal reflux disease (GERD), is a risk factor for esophageal adenocarcinoma. The molecular events underlying the pathogenesis of Barrett's metaplasia are poorly understood, but recent studies suggest that interactions among developmental signaling pathways, morphogenetic factors, and Caudal homeobox (Cdx) genes play key roles. Strong expression of Cdx genes normally is found in the intestine but not in the esophagus and stomach. When mice are genetically engineered so that their gastric cells express Cdx, the stomach develops a metaplastic, intestinal-type epithelium similar to that of Barrett's esophagus. Exposure to acid and bile has been shown to activate the Cdx promoter in certain esophageal cell lines, and Cdx expression has been found in inflamed esophageal squamous epithelium and in the specialized intestinal metaplasia of Barrett's esophagus. Barrett's metaplasia must be sustained by stem cells, which might be identified by putative, intestinal stem cell markers like leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and doublecortin and CaM kinase-like-1 (DCAMKL-1). Emerging concepts in tumor biology suggest that Barrett's cancers may develop from growth-promoting mutations in metaplastic stem cells or their progenitor cell progeny. This report reviews the roles of developmental signaling pathways and the Cdx genes in the development of normal gut epithelia and the potential mechanisms whereby GERD may induce the esophageal expression of Cdx genes and other morphogenetic factors that mediate the development of Barrett's metaplasia. The role of stem cells in the development of metaplasia and in carcinogenesis and the potential for therapies directed at those stem cells also is addressed.

AB - Barrett's esophagus, a squamous-to-columnar cell metaplasia that develops as a result of chronic gastroesophageal reflux disease (GERD), is a risk factor for esophageal adenocarcinoma. The molecular events underlying the pathogenesis of Barrett's metaplasia are poorly understood, but recent studies suggest that interactions among developmental signaling pathways, morphogenetic factors, and Caudal homeobox (Cdx) genes play key roles. Strong expression of Cdx genes normally is found in the intestine but not in the esophagus and stomach. When mice are genetically engineered so that their gastric cells express Cdx, the stomach develops a metaplastic, intestinal-type epithelium similar to that of Barrett's esophagus. Exposure to acid and bile has been shown to activate the Cdx promoter in certain esophageal cell lines, and Cdx expression has been found in inflamed esophageal squamous epithelium and in the specialized intestinal metaplasia of Barrett's esophagus. Barrett's metaplasia must be sustained by stem cells, which might be identified by putative, intestinal stem cell markers like leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and doublecortin and CaM kinase-like-1 (DCAMKL-1). Emerging concepts in tumor biology suggest that Barrett's cancers may develop from growth-promoting mutations in metaplastic stem cells or their progenitor cell progeny. This report reviews the roles of developmental signaling pathways and the Cdx genes in the development of normal gut epithelia and the potential mechanisms whereby GERD may induce the esophageal expression of Cdx genes and other morphogenetic factors that mediate the development of Barrett's metaplasia. The role of stem cells in the development of metaplasia and in carcinogenesis and the potential for therapies directed at those stem cells also is addressed.

KW - Barrett's esophagus

KW - Gastroesophageal reflux

KW - Molecular

KW - Stem cell

UR - http://www.scopus.com/inward/record.url?scp=52449108090&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=52449108090&partnerID=8YFLogxK

U2 - 10.1152/ajpgi.90250.2008

DO - 10.1152/ajpgi.90250.2008

M3 - Article

C2 - 18556417

AN - SCOPUS:52449108090

VL - 295

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 2

ER -