Antibacterial efficacy of eravacycline In Vivo against gram-positive and gram-negative organisms

Marguerite L. Monogue, Abrar K. Thabit, Yukihiro Hamada, David P. Nicolau

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Members of the tetracycline class are frequently classified as bacteriostatic. However, recent findings have demonstrated an improved antibacterial killing profile, often achieving ≥3 log10 bacterial count reduction, when such antibiotics have been given for periods longer than 24 h. We aimed to study this effect with eravacycline, a novel fluorocycline, given in an immunocompetent murine thigh infection model over 72 h against two methicillin-resistant Staphylococcus aureus (MRSA) isolates (eravacycline MICs = 0.03 and 0.25 μg/ml) and three Enterobacteriaceae isolates (eravacycline MICs = 0.125 to 0.25 μg/ml). A humanized eravacycline regimen, 2.5 mg/kg of body weight given intravenously (i.v.) every 12 h (q12h), demonstrated progressively enhanced activity over the 72-h study period. A cumulative dose response in which bacterial density was reduced by more than 3 log10 CFU at 72 h was noted over the study period in the two Gram-positive isolates, and eravacycline performed similarly to comparator antibiotics (tigecycline, linezolid, and vancomycin). A cumulative dose response with eravacycline and comparators (tigecycline and meropenem) over the study period was also observed in the Gram-negative isolates, although more variability in bacterial killing was observed for all antibacterial agents. Overall, a bacterial count reduction of ≥3 log was achieved in one of the three isolates with both eravacycline and tigecycline, while meropenem achieved a similar endpoint against two of the three isolates. Bactericidal activity is typically defined in vitro over 24 h; however, extended regimen studies in vivo may demonstrate an improved correlation with clinical outcomes by better identification of antimicrobial effects.

Original languageEnglish (US)
Pages (from-to)5001-5005
Number of pages5
JournalAntimicrobial agents and chemotherapy
Volume60
Issue number8
DOIs
StatePublished - Aug 2016
Externally publishedYes

ASJC Scopus subject areas

  • Pharmacology
  • Pharmacology (medical)
  • Infectious Diseases

Fingerprint Dive into the research topics of 'Antibacterial efficacy of eravacycline In Vivo against gram-positive and gram-negative organisms'. Together they form a unique fingerprint.

Cite this