Cachectin alters anterior pituitary hormone release by a direct action in vitro

L. Milenkovic, V. Rettori, G. D. Snyder, B. Beutler, S. M. McCann

Research output: Contribution to journalArticle

114 Citations (Scopus)

Abstract

Cachectin (tumor necrosis factor) is a powerful macrophage hormone released during infection, which circulates in blood to produce diverse effects in the organism. We examined the effect of cachectin on release of anterior pituitary hormones from either hemipituitaries or dispersed pituitary cells incubated in vitro. The action of cachectin on dispersed cells was demonstrable only after 2 hr of incubation. With this incubation time, the protein produced a dose-related stimulation of release of adrenocorticotropin (ACTH), growth hormone (GH), and thyrotropin (TSH), but not of prolactin (Prl), from both hemipituitaries and dispersed cells. The doses required for stimulation were low in the case of hemipituitaries, usually of the order of 10-12M, whereas they were higher by one or two orders of magnitude with the dispersed pituitary cells. This may be related either to loss of receptors for the protein during the dispersion procedure or to the fact that in the hemipituitary system cell interactions are facilitated because the cells are close to each other. In the dispersed cell system cachectin evoked a dose-related decrease in cyclic AMP content. Incubation with somatostatin lowered the cyclic AMP content of the cells and depressed GH output without altering output of TSH or Prl. When somatostatin and cachectin were incubated together with the cells, the suppression of cyclic AMP production was abolished; TSH and Prl release were stimulated, but the action of cachectin to stimulate GH release was blocked. The stimulation of Prl release by cachectin in the presence of somatostatin may be related to the elevation of cyclic AMP, a known stimulator of Prl release. The cyclooxygenase inhibitor indomethacin nearly completely blocked the stimulatory effect of cachectin on release of GH and TSH from dispersed pituitary cells but had only a slight and nonsignificant attenuating effect on its ACTH-releasing action. These results suggest that at least part of the stimulatory action of the peptide on pituitary hormone release is brought about by prostaglandins. The failure of indomethacin to block the release of ACTH induced by cachectin suggests that other mechanisms may be involved in the release of ACTH induced by this peptide. Since the concentrations of cachectin required to stimulate pituitary hormone release are similar to those that are encountered in plasma during infection, it is likely that this direct pituitary action has pathophysiological significance.

Original languageEnglish (US)
Pages (from-to)2418-2422
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume86
Issue number7
StatePublished - 1989

Fingerprint

Anterior Pituitary Hormones
Tumor Necrosis Factor-alpha
Prolactin
Adrenocorticotropic Hormone
Cyclic AMP
Growth Hormone
Somatostatin
Pituitary Hormones
Indomethacin
In Vitro Techniques
Peptides
Cyclooxygenase Inhibitors
Thyrotropin
Infection
Cell Communication
Prostaglandins
Proteins
Macrophages
Hormones

ASJC Scopus subject areas

  • General
  • Genetics

Cite this

Cachectin alters anterior pituitary hormone release by a direct action in vitro. / Milenkovic, L.; Rettori, V.; Snyder, G. D.; Beutler, B.; McCann, S. M.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 86, No. 7, 1989, p. 2418-2422.

Research output: Contribution to journalArticle

@article{67ab04e94b91441db68acff424b7d62d,
title = "Cachectin alters anterior pituitary hormone release by a direct action in vitro",
abstract = "Cachectin (tumor necrosis factor) is a powerful macrophage hormone released during infection, which circulates in blood to produce diverse effects in the organism. We examined the effect of cachectin on release of anterior pituitary hormones from either hemipituitaries or dispersed pituitary cells incubated in vitro. The action of cachectin on dispersed cells was demonstrable only after 2 hr of incubation. With this incubation time, the protein produced a dose-related stimulation of release of adrenocorticotropin (ACTH), growth hormone (GH), and thyrotropin (TSH), but not of prolactin (Prl), from both hemipituitaries and dispersed cells. The doses required for stimulation were low in the case of hemipituitaries, usually of the order of 10-12M, whereas they were higher by one or two orders of magnitude with the dispersed pituitary cells. This may be related either to loss of receptors for the protein during the dispersion procedure or to the fact that in the hemipituitary system cell interactions are facilitated because the cells are close to each other. In the dispersed cell system cachectin evoked a dose-related decrease in cyclic AMP content. Incubation with somatostatin lowered the cyclic AMP content of the cells and depressed GH output without altering output of TSH or Prl. When somatostatin and cachectin were incubated together with the cells, the suppression of cyclic AMP production was abolished; TSH and Prl release were stimulated, but the action of cachectin to stimulate GH release was blocked. The stimulation of Prl release by cachectin in the presence of somatostatin may be related to the elevation of cyclic AMP, a known stimulator of Prl release. The cyclooxygenase inhibitor indomethacin nearly completely blocked the stimulatory effect of cachectin on release of GH and TSH from dispersed pituitary cells but had only a slight and nonsignificant attenuating effect on its ACTH-releasing action. These results suggest that at least part of the stimulatory action of the peptide on pituitary hormone release is brought about by prostaglandins. The failure of indomethacin to block the release of ACTH induced by cachectin suggests that other mechanisms may be involved in the release of ACTH induced by this peptide. Since the concentrations of cachectin required to stimulate pituitary hormone release are similar to those that are encountered in plasma during infection, it is likely that this direct pituitary action has pathophysiological significance.",
author = "L. Milenkovic and V. Rettori and Snyder, {G. D.} and B. Beutler and McCann, {S. M.}",
year = "1989",
language = "English (US)",
volume = "86",
pages = "2418--2422",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "7",

}

TY - JOUR

T1 - Cachectin alters anterior pituitary hormone release by a direct action in vitro

AU - Milenkovic, L.

AU - Rettori, V.

AU - Snyder, G. D.

AU - Beutler, B.

AU - McCann, S. M.

PY - 1989

Y1 - 1989

N2 - Cachectin (tumor necrosis factor) is a powerful macrophage hormone released during infection, which circulates in blood to produce diverse effects in the organism. We examined the effect of cachectin on release of anterior pituitary hormones from either hemipituitaries or dispersed pituitary cells incubated in vitro. The action of cachectin on dispersed cells was demonstrable only after 2 hr of incubation. With this incubation time, the protein produced a dose-related stimulation of release of adrenocorticotropin (ACTH), growth hormone (GH), and thyrotropin (TSH), but not of prolactin (Prl), from both hemipituitaries and dispersed cells. The doses required for stimulation were low in the case of hemipituitaries, usually of the order of 10-12M, whereas they were higher by one or two orders of magnitude with the dispersed pituitary cells. This may be related either to loss of receptors for the protein during the dispersion procedure or to the fact that in the hemipituitary system cell interactions are facilitated because the cells are close to each other. In the dispersed cell system cachectin evoked a dose-related decrease in cyclic AMP content. Incubation with somatostatin lowered the cyclic AMP content of the cells and depressed GH output without altering output of TSH or Prl. When somatostatin and cachectin were incubated together with the cells, the suppression of cyclic AMP production was abolished; TSH and Prl release were stimulated, but the action of cachectin to stimulate GH release was blocked. The stimulation of Prl release by cachectin in the presence of somatostatin may be related to the elevation of cyclic AMP, a known stimulator of Prl release. The cyclooxygenase inhibitor indomethacin nearly completely blocked the stimulatory effect of cachectin on release of GH and TSH from dispersed pituitary cells but had only a slight and nonsignificant attenuating effect on its ACTH-releasing action. These results suggest that at least part of the stimulatory action of the peptide on pituitary hormone release is brought about by prostaglandins. The failure of indomethacin to block the release of ACTH induced by cachectin suggests that other mechanisms may be involved in the release of ACTH induced by this peptide. Since the concentrations of cachectin required to stimulate pituitary hormone release are similar to those that are encountered in plasma during infection, it is likely that this direct pituitary action has pathophysiological significance.

AB - Cachectin (tumor necrosis factor) is a powerful macrophage hormone released during infection, which circulates in blood to produce diverse effects in the organism. We examined the effect of cachectin on release of anterior pituitary hormones from either hemipituitaries or dispersed pituitary cells incubated in vitro. The action of cachectin on dispersed cells was demonstrable only after 2 hr of incubation. With this incubation time, the protein produced a dose-related stimulation of release of adrenocorticotropin (ACTH), growth hormone (GH), and thyrotropin (TSH), but not of prolactin (Prl), from both hemipituitaries and dispersed cells. The doses required for stimulation were low in the case of hemipituitaries, usually of the order of 10-12M, whereas they were higher by one or two orders of magnitude with the dispersed pituitary cells. This may be related either to loss of receptors for the protein during the dispersion procedure or to the fact that in the hemipituitary system cell interactions are facilitated because the cells are close to each other. In the dispersed cell system cachectin evoked a dose-related decrease in cyclic AMP content. Incubation with somatostatin lowered the cyclic AMP content of the cells and depressed GH output without altering output of TSH or Prl. When somatostatin and cachectin were incubated together with the cells, the suppression of cyclic AMP production was abolished; TSH and Prl release were stimulated, but the action of cachectin to stimulate GH release was blocked. The stimulation of Prl release by cachectin in the presence of somatostatin may be related to the elevation of cyclic AMP, a known stimulator of Prl release. The cyclooxygenase inhibitor indomethacin nearly completely blocked the stimulatory effect of cachectin on release of GH and TSH from dispersed pituitary cells but had only a slight and nonsignificant attenuating effect on its ACTH-releasing action. These results suggest that at least part of the stimulatory action of the peptide on pituitary hormone release is brought about by prostaglandins. The failure of indomethacin to block the release of ACTH induced by cachectin suggests that other mechanisms may be involved in the release of ACTH induced by this peptide. Since the concentrations of cachectin required to stimulate pituitary hormone release are similar to those that are encountered in plasma during infection, it is likely that this direct pituitary action has pathophysiological significance.

UR - http://www.scopus.com/inward/record.url?scp=3643136955&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3643136955&partnerID=8YFLogxK

M3 - Article

C2 - 2564680

AN - SCOPUS:3643136955

VL - 86

SP - 2418

EP - 2422

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 7

ER -