Central aortic hemodynamics following acute lower and upper-body exercise in a cold environment among patients with coronary artery disease

Heidi E. Hintsala, Rasmus I.P. Valtonen, Antti Kiviniemi, Craig Crandall, Juha Perkiömäki, Arto Hautala, Matti Mäntysaari, Markku Alén, Niilo Ryti, Jouni J.K. Jaakkola, Tiina M. Ikäheimo

Research output: Contribution to journalArticlepeer-review

Abstract

Exercise is beneficial to cardiovascular health, evidenced by reduced post-exercise central aortic blood pressure (BP) and wave reflection. We assessed if post-exercise central hemodynamics are modified due to an altered thermal state related to exercise in the cold in patients with coronary artery disease (CAD). CAD patients (n = 11) performed moderate-intensity lower-body exercise (walking at 65–70% of HRmax) and rested in neutral (+ 22 °C) and cold (− 15 °C) conditions. In another protocol, CAD patients (n = 15) performed static (five 1.5 min work cycles, 10–30% of maximal voluntary contraction) and dynamic (three 5 min workloads, 56–80% of HRmax) upper-body exercise at the same temperatures. Both datasets consisted of four 30-min exposures administered in random order. Central aortic BP and augmentation index (AI) were noninvasively assessed via pulse wave analyses prior to and 25 min after these interventions. Lower-body dynamic exercise decreased post-exercise central systolic BP (6–10 mmHg, p < 0.001) and AI (1–6%, p < 0.001) both after cold and neutral and conditions. Dynamic upper-body exercise lowered central systolic BP (2–4 mmHg, p < 0.001) after exposure to both temperatures. In contrast, static upper-body exercise increased central systolic BP after exposure to cold (7 ± 6 mmHg, p < 0.001). Acute dynamic lower and upper-body exercise mainly lowers post-exercise central BP in CAD patients irrespective of the environmental temperature. In contrast, central systolic BP was elevated after static exercise in cold. CAD patients likely benefit from year-round dynamic exercise, but hemodynamic responses following static exercise in a cold environment should be examined further. Clinical trials.gov: NCT02855905 04/08/2016.

Original languageEnglish (US)
Article number2550
JournalScientific reports
Volume11
Issue number1
DOIs
StatePublished - Dec 2021

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Central aortic hemodynamics following acute lower and upper-body exercise in a cold environment among patients with coronary artery disease'. Together they form a unique fingerprint.

Cite this