Determination of van der Waals Parameters Using a Double Exponential Potential for Nonbonded Divalent Metal Cations in TIP3P Solvent

Viet Hoang Man, Xiongwu Wu, Xibing He, Xiang Qun Xie, Bernard R. Brooks, Junmei Wang

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

A double exponential (DE) functional form for Lennard-Jones (LJ) interactions, proposed in our previous study, has many advantages over LJ potentials including a natural softcore characteristic for the convenience of the pathway-based free-energy calculations, fast convergence, and flexibility in use. In this work, we put the first step on the application of the DE functional form by identifying a DE potential, coined DE-TIP3P, for molecular simulations using the TIP3P water model. The developed DE-TIP3 potential was better than LJ potential in reproducing the experimental water properties. Afterward, we developed the nonbonded models of 15 divalent metal ions, which frequently appear and play vital roles in biological systems, to be consistent with the DE-TIP3P potential and TIP3P water model. Our nonbonded models were as good as the complicated nonbonded dummy cationic models by Jiang et al. and the nonbonded 12-6-4 LJ models by Li and Merz in reproducing the experimental properties of those ions. Moreover, our nonbonded models achieved a better performance than the compromise (CM) LJ models and 12-6-4 LJ models, developed by Li and Merz, in reproducing the properties of MgCl2 in aqueous solution.

Original languageEnglish (US)
Pages (from-to)1086-1097
Number of pages12
JournalJournal of Chemical Theory and Computation
Volume17
Issue number2
DOIs
StatePublished - Feb 9 2021
Externally publishedYes

ASJC Scopus subject areas

  • Computer Science Applications
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Determination of van der Waals Parameters Using a Double Exponential Potential for Nonbonded Divalent Metal Cations in TIP3P Solvent'. Together they form a unique fingerprint.

Cite this