Disrupted brain functional networks in drug-naïve children with attention deficit hyperactivity disorder assessed using graph theory analysis

Ying Chen, Xiaoqi Huang, Min Wu, Kaiming Li, Xinyu Hu, Ping Jiang, Lizhou Chen, Ning He, Jing Dai, Song Wang, Manxi He, Lanting Guo, John A. Sweeney, Qiyong Gong

Research output: Contribution to journalArticle

2 Scopus citations

Abstract

Neuroimaging studies have revealed functional brain network abnormalities in attention deficit hyperactivity disorder (ADHD), but the results have been inconsistent, potentially related to confounding medication effects. Furthermore, specific topological alterations in functional networks and their role in behavioral inhibition dysfunction remain to be established. Resting-state functional magnetic resonance imaging was performed on 51 drug-naïve children with ADHD and 55 age-matched healthy controls. Brain functional networks were constructed by thresholding the partial correlation matrices of 90 brain regions, and graph theory was used to analyze network topological properties. The Stroop test was used to assess cognitive inhibitory abilities. Nonparametric permutation tests were used to compare the topological architectures in the two groups. Compared with healthy subjects, brain networks in ADHD patients demonstrated altered topological characteristics, including lower global (FDR q = 0.01) and local efficiency (p = 0.032, uncorrected) and a longer path length (FDR q = 0.01). Lower nodal efficiencies were found in the left inferior frontal gyrus and anterior cingulate cortex in the ADHD group (FDR both q < 0.05). Altered global and nodal topological efficiencies were associated with the severity of inhibitory cognitive control deficits and hyperactivity symptoms in ADHD (p <0.05). Alterations in network topologies in drug-naïve ADHD patients indicate weaker small-worldization with decreased segregation and integration of functional brain networks. Deficits in the cingulo-fronto-parietal attention network were associated with inhibitory control deficits.

Original languageEnglish (US)
Pages (from-to)4877-4887
Number of pages11
JournalHuman Brain Mapping
Volume40
Issue number17
DOIs
StatePublished - Dec 1 2019

Keywords

  • ADHD
  • brain functional networks
  • graph theory analysis
  • inhibitory cognitive control deficits
  • psychoradiology

ASJC Scopus subject areas

  • Anatomy
  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Neurology
  • Clinical Neurology

Fingerprint Dive into the research topics of 'Disrupted brain functional networks in drug-naïve children with attention deficit hyperactivity disorder assessed using graph theory analysis'. Together they form a unique fingerprint.

  • Cite this

    Chen, Y., Huang, X., Wu, M., Li, K., Hu, X., Jiang, P., Chen, L., He, N., Dai, J., Wang, S., He, M., Guo, L., Sweeney, J. A., & Gong, Q. (2019). Disrupted brain functional networks in drug-naïve children with attention deficit hyperactivity disorder assessed using graph theory analysis. Human Brain Mapping, 40(17), 4877-4887. https://doi.org/10.1002/hbm.24743