Downsizing of valve allografts for use as right heart conduits

Takeshi Hiramatsu, Takuya Miura, Joseph M. Forbess, Christian Brizard, Richard A. Jonas

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

In recent years, there has been a worsening shortage of small and intermediate-sized aortic and pulmonary allografts for use as right ventricular-to-pulmonary artery conduits in infants and children. However, there is a surfeit of large pulmonary and aortic allografts from adult donors. The feasibility of reducing a large allograft to a more useful size was examined using human pulmonary and aortic allografts. Eleven pulmonary allografts (11 to 26 mm in diameter) and nine aortic allografts (5 to 27 mm in diameter) were studied. Valve competence before downsizing was tested with a column of saline to a static pressure equivalent to the normal pulmonary pressure (20 mm Hg). Regurgitant flow was measured for 15 minutes. One complete cusp of the valve was excised, together with a longitudinal strip of the arterial wall. A bicuspid valved conduit was created by suturing the allograft longitudinally. The diameter of the bicuspid valve was measured with a dilator. A nomogram was constructed that predicts the size of the bicuspid allograft based on the size of the original allograft. The competence of the bicuspid allograft was tested and the regurgitant flow was compared with that of the original tricuspid allograft. The transvalvular systolic pressure gradient was measured with the bicuspid allograft placed in a pulsatile extracorporeal perfusion circuit at a flow rale of 1 L/min and a mean pressure of 20.5 ± 2.6 mm Hg. The regurgitant Sow before and after downsizing was 242.9 ± 297.9 mL/15 min and 7.3 ± 9.5 mL/15 min (p = 0.016), respectively, for pulmonary allografts and 113.6 ± 149.5 mL/15 min and 1.5 ± 2.1 mL/15 min (p = 0.039), respectively, for aortic allografts. The pressure gradient after downsizing was 1.1 ± 1.3 mm Hg for pulmonary allografts and 2.5 ± 2.1 mm Hg for aortic allografts. The diameter after downsizing ranged from 7 to 18 mm for pulmonary allografts and from 4 to 18 mm for aortic allografts. The linear regression equation with respect to the diameter before downsizing was Y = 0.713X - 1.338 (r = 0.986) for pulmonary allografts and Y = 0.640X + 0.460 (r = 0.995) for aortic allografts. Bicuspid allografts were found to be significantly more competent than the original allografts and to have minimal pressure gradients in an in vitro system. We conclude that it is feasible to downsize allografts for use as right ventricular-to-pulmonary artery conduits.

Original languageEnglish (US)
Pages (from-to)339-343
Number of pages5
JournalThe Annals of Thoracic Surgery
Volume58
Issue number2
StatePublished - Aug 1994

Fingerprint

Allografts
Lung
Bicuspid
Pressure
Mental Competency
Pulmonary Artery
Pulsatile Flow
Nomograms
Respiratory Sounds

ASJC Scopus subject areas

  • Surgery
  • Cardiology and Cardiovascular Medicine

Cite this

Hiramatsu, T., Miura, T., Forbess, J. M., Brizard, C., & Jonas, R. A. (1994). Downsizing of valve allografts for use as right heart conduits. The Annals of Thoracic Surgery, 58(2), 339-343.

Downsizing of valve allografts for use as right heart conduits. / Hiramatsu, Takeshi; Miura, Takuya; Forbess, Joseph M.; Brizard, Christian; Jonas, Richard A.

In: The Annals of Thoracic Surgery, Vol. 58, No. 2, 08.1994, p. 339-343.

Research output: Contribution to journalArticle

Hiramatsu, T, Miura, T, Forbess, JM, Brizard, C & Jonas, RA 1994, 'Downsizing of valve allografts for use as right heart conduits', The Annals of Thoracic Surgery, vol. 58, no. 2, pp. 339-343.
Hiramatsu T, Miura T, Forbess JM, Brizard C, Jonas RA. Downsizing of valve allografts for use as right heart conduits. The Annals of Thoracic Surgery. 1994 Aug;58(2):339-343.
Hiramatsu, Takeshi ; Miura, Takuya ; Forbess, Joseph M. ; Brizard, Christian ; Jonas, Richard A. / Downsizing of valve allografts for use as right heart conduits. In: The Annals of Thoracic Surgery. 1994 ; Vol. 58, No. 2. pp. 339-343.
@article{d5f026f164e7463896dce5bc60b07d6c,
title = "Downsizing of valve allografts for use as right heart conduits",
abstract = "In recent years, there has been a worsening shortage of small and intermediate-sized aortic and pulmonary allografts for use as right ventricular-to-pulmonary artery conduits in infants and children. However, there is a surfeit of large pulmonary and aortic allografts from adult donors. The feasibility of reducing a large allograft to a more useful size was examined using human pulmonary and aortic allografts. Eleven pulmonary allografts (11 to 26 mm in diameter) and nine aortic allografts (5 to 27 mm in diameter) were studied. Valve competence before downsizing was tested with a column of saline to a static pressure equivalent to the normal pulmonary pressure (20 mm Hg). Regurgitant flow was measured for 15 minutes. One complete cusp of the valve was excised, together with a longitudinal strip of the arterial wall. A bicuspid valved conduit was created by suturing the allograft longitudinally. The diameter of the bicuspid valve was measured with a dilator. A nomogram was constructed that predicts the size of the bicuspid allograft based on the size of the original allograft. The competence of the bicuspid allograft was tested and the regurgitant flow was compared with that of the original tricuspid allograft. The transvalvular systolic pressure gradient was measured with the bicuspid allograft placed in a pulsatile extracorporeal perfusion circuit at a flow rale of 1 L/min and a mean pressure of 20.5 ± 2.6 mm Hg. The regurgitant Sow before and after downsizing was 242.9 ± 297.9 mL/15 min and 7.3 ± 9.5 mL/15 min (p = 0.016), respectively, for pulmonary allografts and 113.6 ± 149.5 mL/15 min and 1.5 ± 2.1 mL/15 min (p = 0.039), respectively, for aortic allografts. The pressure gradient after downsizing was 1.1 ± 1.3 mm Hg for pulmonary allografts and 2.5 ± 2.1 mm Hg for aortic allografts. The diameter after downsizing ranged from 7 to 18 mm for pulmonary allografts and from 4 to 18 mm for aortic allografts. The linear regression equation with respect to the diameter before downsizing was Y = 0.713X - 1.338 (r = 0.986) for pulmonary allografts and Y = 0.640X + 0.460 (r = 0.995) for aortic allografts. Bicuspid allografts were found to be significantly more competent than the original allografts and to have minimal pressure gradients in an in vitro system. We conclude that it is feasible to downsize allografts for use as right ventricular-to-pulmonary artery conduits.",
author = "Takeshi Hiramatsu and Takuya Miura and Forbess, {Joseph M.} and Christian Brizard and Jonas, {Richard A.}",
year = "1994",
month = "8",
language = "English (US)",
volume = "58",
pages = "339--343",
journal = "Annals of Thoracic Surgery",
issn = "0003-4975",
publisher = "Elsevier USA",
number = "2",

}

TY - JOUR

T1 - Downsizing of valve allografts for use as right heart conduits

AU - Hiramatsu, Takeshi

AU - Miura, Takuya

AU - Forbess, Joseph M.

AU - Brizard, Christian

AU - Jonas, Richard A.

PY - 1994/8

Y1 - 1994/8

N2 - In recent years, there has been a worsening shortage of small and intermediate-sized aortic and pulmonary allografts for use as right ventricular-to-pulmonary artery conduits in infants and children. However, there is a surfeit of large pulmonary and aortic allografts from adult donors. The feasibility of reducing a large allograft to a more useful size was examined using human pulmonary and aortic allografts. Eleven pulmonary allografts (11 to 26 mm in diameter) and nine aortic allografts (5 to 27 mm in diameter) were studied. Valve competence before downsizing was tested with a column of saline to a static pressure equivalent to the normal pulmonary pressure (20 mm Hg). Regurgitant flow was measured for 15 minutes. One complete cusp of the valve was excised, together with a longitudinal strip of the arterial wall. A bicuspid valved conduit was created by suturing the allograft longitudinally. The diameter of the bicuspid valve was measured with a dilator. A nomogram was constructed that predicts the size of the bicuspid allograft based on the size of the original allograft. The competence of the bicuspid allograft was tested and the regurgitant flow was compared with that of the original tricuspid allograft. The transvalvular systolic pressure gradient was measured with the bicuspid allograft placed in a pulsatile extracorporeal perfusion circuit at a flow rale of 1 L/min and a mean pressure of 20.5 ± 2.6 mm Hg. The regurgitant Sow before and after downsizing was 242.9 ± 297.9 mL/15 min and 7.3 ± 9.5 mL/15 min (p = 0.016), respectively, for pulmonary allografts and 113.6 ± 149.5 mL/15 min and 1.5 ± 2.1 mL/15 min (p = 0.039), respectively, for aortic allografts. The pressure gradient after downsizing was 1.1 ± 1.3 mm Hg for pulmonary allografts and 2.5 ± 2.1 mm Hg for aortic allografts. The diameter after downsizing ranged from 7 to 18 mm for pulmonary allografts and from 4 to 18 mm for aortic allografts. The linear regression equation with respect to the diameter before downsizing was Y = 0.713X - 1.338 (r = 0.986) for pulmonary allografts and Y = 0.640X + 0.460 (r = 0.995) for aortic allografts. Bicuspid allografts were found to be significantly more competent than the original allografts and to have minimal pressure gradients in an in vitro system. We conclude that it is feasible to downsize allografts for use as right ventricular-to-pulmonary artery conduits.

AB - In recent years, there has been a worsening shortage of small and intermediate-sized aortic and pulmonary allografts for use as right ventricular-to-pulmonary artery conduits in infants and children. However, there is a surfeit of large pulmonary and aortic allografts from adult donors. The feasibility of reducing a large allograft to a more useful size was examined using human pulmonary and aortic allografts. Eleven pulmonary allografts (11 to 26 mm in diameter) and nine aortic allografts (5 to 27 mm in diameter) were studied. Valve competence before downsizing was tested with a column of saline to a static pressure equivalent to the normal pulmonary pressure (20 mm Hg). Regurgitant flow was measured for 15 minutes. One complete cusp of the valve was excised, together with a longitudinal strip of the arterial wall. A bicuspid valved conduit was created by suturing the allograft longitudinally. The diameter of the bicuspid valve was measured with a dilator. A nomogram was constructed that predicts the size of the bicuspid allograft based on the size of the original allograft. The competence of the bicuspid allograft was tested and the regurgitant flow was compared with that of the original tricuspid allograft. The transvalvular systolic pressure gradient was measured with the bicuspid allograft placed in a pulsatile extracorporeal perfusion circuit at a flow rale of 1 L/min and a mean pressure of 20.5 ± 2.6 mm Hg. The regurgitant Sow before and after downsizing was 242.9 ± 297.9 mL/15 min and 7.3 ± 9.5 mL/15 min (p = 0.016), respectively, for pulmonary allografts and 113.6 ± 149.5 mL/15 min and 1.5 ± 2.1 mL/15 min (p = 0.039), respectively, for aortic allografts. The pressure gradient after downsizing was 1.1 ± 1.3 mm Hg for pulmonary allografts and 2.5 ± 2.1 mm Hg for aortic allografts. The diameter after downsizing ranged from 7 to 18 mm for pulmonary allografts and from 4 to 18 mm for aortic allografts. The linear regression equation with respect to the diameter before downsizing was Y = 0.713X - 1.338 (r = 0.986) for pulmonary allografts and Y = 0.640X + 0.460 (r = 0.995) for aortic allografts. Bicuspid allografts were found to be significantly more competent than the original allografts and to have minimal pressure gradients in an in vitro system. We conclude that it is feasible to downsize allografts for use as right ventricular-to-pulmonary artery conduits.

UR - http://www.scopus.com/inward/record.url?scp=0027935114&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027935114&partnerID=8YFLogxK

M3 - Article

C2 - 8067829

AN - SCOPUS:0027935114

VL - 58

SP - 339

EP - 343

JO - Annals of Thoracic Surgery

JF - Annals of Thoracic Surgery

SN - 0003-4975

IS - 2

ER -