Enhancement of the sensitivity of human colon cancer cells to growth inhibition by acivicin achieved through inhibition of nucleic acid precursor salvage by dipyridamole

P. H. Fischer, R. Pamakcu, G. Bittner, J. K V Willson

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

This study was undertaken to determine if salvage of nucleic acid precursors might constitute a mechanism of resistance to acivicin in human colon cancer cells and, if so, to establish whether dipyridamole, an inhibitor of nucleoside and nucleobase transport, can block the salvage process and restore sensitivity to acivicin. Acivicin inhibited the replication of human colon cancer cells (VACO 5) in vitro in a dose- and time-dependent fashion. In addition, marked cell lysis was evident after a 24-hr exposure to acivicin at concentrations greater than 1 μg/ml. The primary metabolic effect of acivicin was depletion of the cytidine triphosphate and guanosine triphosphate pools. Adenosine triphosphate levels were also reduced, but apparently as a consequence of the guanosine triphosphate depletion. VACO 5 cells exposed to acivicin (3 μg/ml) efficiently salvaged low levels (1 μm) of cytidine, guanosine, and guanine and could, therefore, restore the depleted nucleotide pools. The combination of cytidine and guanosine, but not either nucleoside alone, provided significant protection against the growth-inhibitory properties of acivicin. Dipyridamole, at a noncytotoxic concentration (5 μM), blocked repletion of the cytidine triphosphate and guanosine triphosphate pools in cells exposed to acivicin and the nucleic acid precursors. As a result, the growth-inhibitory effects of acivicin were maintained. The salvage of cytidine was particularly sensitive to inhibition by dipyridamole, and no restoration of cytidine triphosphate pools was evident. The cellular uptake of a variety of nucleic acid precursors was differentially sensitive to inhibition by dipyridamole. The 50% inhibitory dose values ranged from 0.01 to 2.5 μM for cytidine and uridine, respectively. The results of this study indicate that, although the replication of VACO 5 cells was inhibited by acivicin, low levels of nucleosides and nucleobases can circumvent the cytotoxicity. Dipyridamole effectively blocked the salvage pathways and restored the sensitivity of the cancer cells to the antiproliferative actions of acivicin.

Original languageEnglish (US)
Pages (from-to)3355-3359
Number of pages5
JournalCancer Research
Volume44
Issue number8
StatePublished - 1984

Fingerprint

acivicin
Nucleic Acid Precursors
Dipyridamole
Colonic Neoplasms
Growth
Cytidine
Cytidine Triphosphate
Guanosine Triphosphate
Nucleosides
Guanosine
Uridine

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

Enhancement of the sensitivity of human colon cancer cells to growth inhibition by acivicin achieved through inhibition of nucleic acid precursor salvage by dipyridamole. / Fischer, P. H.; Pamakcu, R.; Bittner, G.; Willson, J. K V.

In: Cancer Research, Vol. 44, No. 8, 1984, p. 3355-3359.

Research output: Contribution to journalArticle

@article{6094ba493e1d4702858c04e14bbd379c,
title = "Enhancement of the sensitivity of human colon cancer cells to growth inhibition by acivicin achieved through inhibition of nucleic acid precursor salvage by dipyridamole",
abstract = "This study was undertaken to determine if salvage of nucleic acid precursors might constitute a mechanism of resistance to acivicin in human colon cancer cells and, if so, to establish whether dipyridamole, an inhibitor of nucleoside and nucleobase transport, can block the salvage process and restore sensitivity to acivicin. Acivicin inhibited the replication of human colon cancer cells (VACO 5) in vitro in a dose- and time-dependent fashion. In addition, marked cell lysis was evident after a 24-hr exposure to acivicin at concentrations greater than 1 μg/ml. The primary metabolic effect of acivicin was depletion of the cytidine triphosphate and guanosine triphosphate pools. Adenosine triphosphate levels were also reduced, but apparently as a consequence of the guanosine triphosphate depletion. VACO 5 cells exposed to acivicin (3 μg/ml) efficiently salvaged low levels (1 μm) of cytidine, guanosine, and guanine and could, therefore, restore the depleted nucleotide pools. The combination of cytidine and guanosine, but not either nucleoside alone, provided significant protection against the growth-inhibitory properties of acivicin. Dipyridamole, at a noncytotoxic concentration (5 μM), blocked repletion of the cytidine triphosphate and guanosine triphosphate pools in cells exposed to acivicin and the nucleic acid precursors. As a result, the growth-inhibitory effects of acivicin were maintained. The salvage of cytidine was particularly sensitive to inhibition by dipyridamole, and no restoration of cytidine triphosphate pools was evident. The cellular uptake of a variety of nucleic acid precursors was differentially sensitive to inhibition by dipyridamole. The 50{\%} inhibitory dose values ranged from 0.01 to 2.5 μM for cytidine and uridine, respectively. The results of this study indicate that, although the replication of VACO 5 cells was inhibited by acivicin, low levels of nucleosides and nucleobases can circumvent the cytotoxicity. Dipyridamole effectively blocked the salvage pathways and restored the sensitivity of the cancer cells to the antiproliferative actions of acivicin.",
author = "Fischer, {P. H.} and R. Pamakcu and G. Bittner and Willson, {J. K V}",
year = "1984",
language = "English (US)",
volume = "44",
pages = "3355--3359",
journal = "Journal of Cancer Research",
issn = "0008-5472",
publisher = "American Association for Cancer Research Inc.",
number = "8",

}

TY - JOUR

T1 - Enhancement of the sensitivity of human colon cancer cells to growth inhibition by acivicin achieved through inhibition of nucleic acid precursor salvage by dipyridamole

AU - Fischer, P. H.

AU - Pamakcu, R.

AU - Bittner, G.

AU - Willson, J. K V

PY - 1984

Y1 - 1984

N2 - This study was undertaken to determine if salvage of nucleic acid precursors might constitute a mechanism of resistance to acivicin in human colon cancer cells and, if so, to establish whether dipyridamole, an inhibitor of nucleoside and nucleobase transport, can block the salvage process and restore sensitivity to acivicin. Acivicin inhibited the replication of human colon cancer cells (VACO 5) in vitro in a dose- and time-dependent fashion. In addition, marked cell lysis was evident after a 24-hr exposure to acivicin at concentrations greater than 1 μg/ml. The primary metabolic effect of acivicin was depletion of the cytidine triphosphate and guanosine triphosphate pools. Adenosine triphosphate levels were also reduced, but apparently as a consequence of the guanosine triphosphate depletion. VACO 5 cells exposed to acivicin (3 μg/ml) efficiently salvaged low levels (1 μm) of cytidine, guanosine, and guanine and could, therefore, restore the depleted nucleotide pools. The combination of cytidine and guanosine, but not either nucleoside alone, provided significant protection against the growth-inhibitory properties of acivicin. Dipyridamole, at a noncytotoxic concentration (5 μM), blocked repletion of the cytidine triphosphate and guanosine triphosphate pools in cells exposed to acivicin and the nucleic acid precursors. As a result, the growth-inhibitory effects of acivicin were maintained. The salvage of cytidine was particularly sensitive to inhibition by dipyridamole, and no restoration of cytidine triphosphate pools was evident. The cellular uptake of a variety of nucleic acid precursors was differentially sensitive to inhibition by dipyridamole. The 50% inhibitory dose values ranged from 0.01 to 2.5 μM for cytidine and uridine, respectively. The results of this study indicate that, although the replication of VACO 5 cells was inhibited by acivicin, low levels of nucleosides and nucleobases can circumvent the cytotoxicity. Dipyridamole effectively blocked the salvage pathways and restored the sensitivity of the cancer cells to the antiproliferative actions of acivicin.

AB - This study was undertaken to determine if salvage of nucleic acid precursors might constitute a mechanism of resistance to acivicin in human colon cancer cells and, if so, to establish whether dipyridamole, an inhibitor of nucleoside and nucleobase transport, can block the salvage process and restore sensitivity to acivicin. Acivicin inhibited the replication of human colon cancer cells (VACO 5) in vitro in a dose- and time-dependent fashion. In addition, marked cell lysis was evident after a 24-hr exposure to acivicin at concentrations greater than 1 μg/ml. The primary metabolic effect of acivicin was depletion of the cytidine triphosphate and guanosine triphosphate pools. Adenosine triphosphate levels were also reduced, but apparently as a consequence of the guanosine triphosphate depletion. VACO 5 cells exposed to acivicin (3 μg/ml) efficiently salvaged low levels (1 μm) of cytidine, guanosine, and guanine and could, therefore, restore the depleted nucleotide pools. The combination of cytidine and guanosine, but not either nucleoside alone, provided significant protection against the growth-inhibitory properties of acivicin. Dipyridamole, at a noncytotoxic concentration (5 μM), blocked repletion of the cytidine triphosphate and guanosine triphosphate pools in cells exposed to acivicin and the nucleic acid precursors. As a result, the growth-inhibitory effects of acivicin were maintained. The salvage of cytidine was particularly sensitive to inhibition by dipyridamole, and no restoration of cytidine triphosphate pools was evident. The cellular uptake of a variety of nucleic acid precursors was differentially sensitive to inhibition by dipyridamole. The 50% inhibitory dose values ranged from 0.01 to 2.5 μM for cytidine and uridine, respectively. The results of this study indicate that, although the replication of VACO 5 cells was inhibited by acivicin, low levels of nucleosides and nucleobases can circumvent the cytotoxicity. Dipyridamole effectively blocked the salvage pathways and restored the sensitivity of the cancer cells to the antiproliferative actions of acivicin.

UR - http://www.scopus.com/inward/record.url?scp=0021213132&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021213132&partnerID=8YFLogxK

M3 - Article

VL - 44

SP - 3355

EP - 3359

JO - Journal of Cancer Research

JF - Journal of Cancer Research

SN - 0008-5472

IS - 8

ER -