Gene profiling of human adipose tissue during evoked inflammation in vivo

Rachana Shah, Yun Lu, Christine C. Hinkle, Fiona C. McGillicuddy, Roy Kim, Sridhar Hannenhalli, Thomas P. Cappola, Sean Heffron, XingMei Wang, Nehal N. Mehta, Mary Putt, Muredach P. Reilly

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

OBJECTIVE - Adipose inflammation plays a central role in obesity-related metabolic and cardiovascular complications. However, few human adipose-secreted proteins are known to mediate these processes. We hypothesized that microarray mRNA profiling of human adipose during evoked inflammation could identify novel adipocytokines. RESEARCH DESIGN AND METHODS - Healthy human volunteers (n = 14) were treated with intravenous endotoxin (3 ng/kg lipopolysaccharide [LPS]) and underwent subcutaneous adipose biopsies before and after LPS. On Affymetrix U133Plus 2.0 arrays, adipose mRNAs modulated >1.5-fold (with P < 0.00001) were selected. SignalP 3.0 and SecretomeP 2.0 identified genes predicted to encode secreted proteins. Of these, 86 candidates were chosen for validation in adipose from an independent human endotoxemia protocol (N = 7, with 0.6 ng/kg LPS) and for exploration of cellular origin in primary human adipocytes and macrophages in vitro. RESULTS - Microarray identified 776 adipose genes modulated by LPS; 298 were predicted to be secreted. Of detectable prioritized genes, 82 of 85 (96% [95% CI 90-99]) were upregulated (fold changes >1.0) during the lower-dose (LPS 0.6 ng/kg) validation study and 51 of 85 (59% [49-70]) were induced greater than 1.5-fold. Treatment of primary adipocytes with LPS and macrophage polarization to M1 proinflammatory phenotype increased expression by 1.5-fold for 58 and 73% of detectable genes, respectively. CONCLUSIONS - We demonstrate that evoked inflammation of human adipose in vivo modulated expression of multiple genes likely secreted by adipocytes and monocytes. These included established adipocytokines and chemokines implicated in recruitment and activation of lymphocytes, adhesion molecules, antioxidants, and several novel genes with unknown function. Such candidates may represent biomarkers and therapeutic targets for obesity-related complications.

Original languageEnglish (US)
Pages (from-to)2211-2219
Number of pages9
JournalDiabetes
Volume58
Issue number10
DOIs
StatePublished - Oct 2009

ASJC Scopus subject areas

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism

Fingerprint

Dive into the research topics of 'Gene profiling of human adipose tissue during evoked inflammation in vivo'. Together they form a unique fingerprint.

Cite this