Genetics and neurobiology of circadian clocks in mammals

S. M. Siepka, S. H. Yoo, J. Park, C. Lee, J. S. Takahashi

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

In animals, circadian behavior can be analyzed as an integrated system, beginning with genes and leading ultimately to behavioral outputs. In the last decade, the molecular mechanism of circadian clocks has been unraveled primarily by the use of phenotype-driven (forward) genetic analysis in a number of model systems. Circadian oscillations are generated by a set of genes forming a transcriptional autoregulatory feedback loop. In mammals, there is a "core" set of circadian genes that form the primary negative feedback loop of the clock mechanism (Clock/Npas2, Bmal1, Per1, Per2, Cry1, Cry2, and CK1ε). A further dozen candidate genes have been identified and have additional roles in the circadian gene network such as the feedback loop involving Rev-erbα. Despite this remarkable progress, it is clear that a significant number of genes that strongly influence and regulate circadian rhythms in mammals remain to be discovered and identified. As part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen using a wide range of nervous system and behavioral phenotypes, we have identified a number of new circadian mutants in mice. Here, we describe a new short-period circadian mutant, part-time (prtm), which is caused by a loss-of-function mutation in the Cryptochrome1 (Cry1) gene. We also describe a long-period circadian mutant named Overtime (Ovtm). Positional cloning and genetic complementation reveal that Ovtm is encoded by the F-box protein FBXL3, a component of the SKP1-CUL1-F-box protein (SCF) E3 ubiquitin ligase complex. The Ovtm mutation causes an isoleucine to threonine (I364T) substitution leading to a loss of function in FBXL3 that interacts specifically with the CRYPTOCHROME (CRY) proteins. In Ovtm mice, expression of the PERIOD proteins PER1 and PER2 is reduced; however, the CRY proteins CRY1 and CRY2 are unchanged. The loss of FBXL3 function leads to a stabilization of the CRY proteins, which in turn leads to a global transcriptional repression of the Per and Cry genes. Thus, Fbxl3Ovtm defines a molecular link between CRY turnover and CLOCK/BMAL1-dependent circadian transcription to modulate circadian period.

Original languageEnglish (US)
Pages (from-to)251-259
Number of pages9
JournalCold Spring Harbor Symposia on Quantitative Biology
Volume72
DOIs
StatePublished - 2007

Fingerprint

Circadian Clocks
neurophysiology
Mammals
Neurobiology
circadian rhythm
Clocks
Genes
mammals
F-Box Proteins
genes
F-box proteins
mutants
Feedback
Proteins
N-ethyl-N-nitrosourea
genetic complementation
Ethylnitrosourea
Phenotype
phenotype
Animal Behavior

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Biochemistry
  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

Genetics and neurobiology of circadian clocks in mammals. / Siepka, S. M.; Yoo, S. H.; Park, J.; Lee, C.; Takahashi, J. S.

In: Cold Spring Harbor Symposia on Quantitative Biology, Vol. 72, 2007, p. 251-259.

Research output: Contribution to journalArticle

Siepka, S. M. ; Yoo, S. H. ; Park, J. ; Lee, C. ; Takahashi, J. S. / Genetics and neurobiology of circadian clocks in mammals. In: Cold Spring Harbor Symposia on Quantitative Biology. 2007 ; Vol. 72. pp. 251-259.
@article{4f67cb136ee64e73bc1acb1dbe2d6fcb,
title = "Genetics and neurobiology of circadian clocks in mammals",
abstract = "In animals, circadian behavior can be analyzed as an integrated system, beginning with genes and leading ultimately to behavioral outputs. In the last decade, the molecular mechanism of circadian clocks has been unraveled primarily by the use of phenotype-driven (forward) genetic analysis in a number of model systems. Circadian oscillations are generated by a set of genes forming a transcriptional autoregulatory feedback loop. In mammals, there is a {"}core{"} set of circadian genes that form the primary negative feedback loop of the clock mechanism (Clock/Npas2, Bmal1, Per1, Per2, Cry1, Cry2, and CK1ε). A further dozen candidate genes have been identified and have additional roles in the circadian gene network such as the feedback loop involving Rev-erbα. Despite this remarkable progress, it is clear that a significant number of genes that strongly influence and regulate circadian rhythms in mammals remain to be discovered and identified. As part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen using a wide range of nervous system and behavioral phenotypes, we have identified a number of new circadian mutants in mice. Here, we describe a new short-period circadian mutant, part-time (prtm), which is caused by a loss-of-function mutation in the Cryptochrome1 (Cry1) gene. We also describe a long-period circadian mutant named Overtime (Ovtm). Positional cloning and genetic complementation reveal that Ovtm is encoded by the F-box protein FBXL3, a component of the SKP1-CUL1-F-box protein (SCF) E3 ubiquitin ligase complex. The Ovtm mutation causes an isoleucine to threonine (I364T) substitution leading to a loss of function in FBXL3 that interacts specifically with the CRYPTOCHROME (CRY) proteins. In Ovtm mice, expression of the PERIOD proteins PER1 and PER2 is reduced; however, the CRY proteins CRY1 and CRY2 are unchanged. The loss of FBXL3 function leads to a stabilization of the CRY proteins, which in turn leads to a global transcriptional repression of the Per and Cry genes. Thus, Fbxl3Ovtm defines a molecular link between CRY turnover and CLOCK/BMAL1-dependent circadian transcription to modulate circadian period.",
author = "Siepka, {S. M.} and Yoo, {S. H.} and J. Park and C. Lee and Takahashi, {J. S.}",
year = "2007",
doi = "10.1101/sqb.2007.72.052",
language = "English (US)",
volume = "72",
pages = "251--259",
journal = "Cold Spring Harbor Symposia on Quantitative Biology",
issn = "0091-7451",
publisher = "Cold Spring Harbor Laboratory Press",

}

TY - JOUR

T1 - Genetics and neurobiology of circadian clocks in mammals

AU - Siepka, S. M.

AU - Yoo, S. H.

AU - Park, J.

AU - Lee, C.

AU - Takahashi, J. S.

PY - 2007

Y1 - 2007

N2 - In animals, circadian behavior can be analyzed as an integrated system, beginning with genes and leading ultimately to behavioral outputs. In the last decade, the molecular mechanism of circadian clocks has been unraveled primarily by the use of phenotype-driven (forward) genetic analysis in a number of model systems. Circadian oscillations are generated by a set of genes forming a transcriptional autoregulatory feedback loop. In mammals, there is a "core" set of circadian genes that form the primary negative feedback loop of the clock mechanism (Clock/Npas2, Bmal1, Per1, Per2, Cry1, Cry2, and CK1ε). A further dozen candidate genes have been identified and have additional roles in the circadian gene network such as the feedback loop involving Rev-erbα. Despite this remarkable progress, it is clear that a significant number of genes that strongly influence and regulate circadian rhythms in mammals remain to be discovered and identified. As part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen using a wide range of nervous system and behavioral phenotypes, we have identified a number of new circadian mutants in mice. Here, we describe a new short-period circadian mutant, part-time (prtm), which is caused by a loss-of-function mutation in the Cryptochrome1 (Cry1) gene. We also describe a long-period circadian mutant named Overtime (Ovtm). Positional cloning and genetic complementation reveal that Ovtm is encoded by the F-box protein FBXL3, a component of the SKP1-CUL1-F-box protein (SCF) E3 ubiquitin ligase complex. The Ovtm mutation causes an isoleucine to threonine (I364T) substitution leading to a loss of function in FBXL3 that interacts specifically with the CRYPTOCHROME (CRY) proteins. In Ovtm mice, expression of the PERIOD proteins PER1 and PER2 is reduced; however, the CRY proteins CRY1 and CRY2 are unchanged. The loss of FBXL3 function leads to a stabilization of the CRY proteins, which in turn leads to a global transcriptional repression of the Per and Cry genes. Thus, Fbxl3Ovtm defines a molecular link between CRY turnover and CLOCK/BMAL1-dependent circadian transcription to modulate circadian period.

AB - In animals, circadian behavior can be analyzed as an integrated system, beginning with genes and leading ultimately to behavioral outputs. In the last decade, the molecular mechanism of circadian clocks has been unraveled primarily by the use of phenotype-driven (forward) genetic analysis in a number of model systems. Circadian oscillations are generated by a set of genes forming a transcriptional autoregulatory feedback loop. In mammals, there is a "core" set of circadian genes that form the primary negative feedback loop of the clock mechanism (Clock/Npas2, Bmal1, Per1, Per2, Cry1, Cry2, and CK1ε). A further dozen candidate genes have been identified and have additional roles in the circadian gene network such as the feedback loop involving Rev-erbα. Despite this remarkable progress, it is clear that a significant number of genes that strongly influence and regulate circadian rhythms in mammals remain to be discovered and identified. As part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen using a wide range of nervous system and behavioral phenotypes, we have identified a number of new circadian mutants in mice. Here, we describe a new short-period circadian mutant, part-time (prtm), which is caused by a loss-of-function mutation in the Cryptochrome1 (Cry1) gene. We also describe a long-period circadian mutant named Overtime (Ovtm). Positional cloning and genetic complementation reveal that Ovtm is encoded by the F-box protein FBXL3, a component of the SKP1-CUL1-F-box protein (SCF) E3 ubiquitin ligase complex. The Ovtm mutation causes an isoleucine to threonine (I364T) substitution leading to a loss of function in FBXL3 that interacts specifically with the CRYPTOCHROME (CRY) proteins. In Ovtm mice, expression of the PERIOD proteins PER1 and PER2 is reduced; however, the CRY proteins CRY1 and CRY2 are unchanged. The loss of FBXL3 function leads to a stabilization of the CRY proteins, which in turn leads to a global transcriptional repression of the Per and Cry genes. Thus, Fbxl3Ovtm defines a molecular link between CRY turnover and CLOCK/BMAL1-dependent circadian transcription to modulate circadian period.

UR - http://www.scopus.com/inward/record.url?scp=48249087247&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=48249087247&partnerID=8YFLogxK

U2 - 10.1101/sqb.2007.72.052

DO - 10.1101/sqb.2007.72.052

M3 - Article

VL - 72

SP - 251

EP - 259

JO - Cold Spring Harbor Symposia on Quantitative Biology

JF - Cold Spring Harbor Symposia on Quantitative Biology

SN - 0091-7451

ER -