Geometric catalysis of membrane fission driven by flexible dynamin rings

Anna V. Shnyrova, Pavel V. Bashkirov, Sergey A. Akimov, Thomas J. Pucadyil, Joshua Zimmerberg, Sandra L. Schmid, Vadim A. Frolov

Research output: Contribution to journalArticlepeer-review

89 Scopus citations

Abstract

Biological membrane fission requires protein-driven stress. The guanosine triphosphatase (GTPase) dynamin builds up membrane stress by polymerizing into a helical collar that constricts the neck of budding vesicles. How this curvature stress mediates nonleaky membrane remodeling is actively debated. Using lipid nanotubes as substrates to directly measure geometric intermediates of the fission pathway, we found that GTP hydrolysis limits dynamin polymerization into short, metastable collars that are optimal for fission. Collars as short as two rungs translated radial constriction to reversible hemifission via membrane wedging of the pleckstrin homology domains (PHDs) of dynamin. Modeling revealed that tilting of the PHDs to conform with membrane deformations creates the low-energy pathway for hemifission. This local coordination of dynamin and lipids suggests how membranes can be remodeled in cells.

Original languageEnglish (US)
Pages (from-to)1433-1436
Number of pages4
JournalScience
Volume339
Issue number6126
DOIs
StatePublished - Mar 22 2013

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Geometric catalysis of membrane fission driven by flexible dynamin rings'. Together they form a unique fingerprint.

Cite this