Global Quantitative Modeling of Chromatin Factor Interactions

Jian Zhou, Olga G. Troyanskaya

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the "chromatin codes") remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles - we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions.

Original languageEnglish (US)
Article numbere1003525
JournalPLoS Computational Biology
Volume10
Issue number3
DOIs
StatePublished - Mar 2014
Externally publishedYes

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Global Quantitative Modeling of Chromatin Factor Interactions'. Together they form a unique fingerprint.

Cite this