Green tea epigallocatechin-3-gallate suppresses autoimmune arthritis through indoleamine-2,3-dioxygenase expressing dendritic cells and the nuclear factor, erythroid 2-like 2 antioxidant pathway

So Youn Min, Mei Yan, Sang Bum Kim, Sneha Ravikumar, Seong Ryuel Kwon, Kamala Vanarsa, Ho Youn Kim, Laurie S. Davis, Chandra Mohan

Research output: Contribution to journalArticle

24 Scopus citations

Abstract

Background: The activity of one of the major catechins in Green Tea, the polyphenol (-)-epigallocatechin-3-gallate (EGCG), has been shown to have a variety of health benefits. Recent studies suggest that EGCG can modulate both the innate and adaptive arms of the immune system. The goal of the current studies was to examine the immunomodulatory effects and mechanisms of action of EGCG on experimental arthritis in mice. Methods: EGCG (10 mg/kg) was administered by oral gavage after CIA induction, while control mice were administered phosphate buffered saline (PBS). Disease mechanisms were studied in both groups of mice. Phenotypes were examined using repeated measure analysis of variance (ANOVA) and data from in vitro and ex vivo experiments were analyzed for significance using the Mann-Whitney U test. Results: EGCG treatment ameliorated clinical symptoms and reduced histological scores in arthritic mice. Serum type-II collagen-specific immunoglobulin (Ig) IgG2a antibodies were significantly lower in EGCG-fed mice compared to PBS-treated mice. EGCG significantly suppressed T cell proliferation and relative frequencies of CD4 T cells, CD8 T cells and B cell subsets including marginal zone B cells, T1 and T2 transitional B cells, while increasing the frequency of CD4<sup>+</sup> Foxp3<sup>+</sup> regulatory T cells (Tregs) and indoleamine-2,3-dioxygenase (IDO) expression by CD11b<sup>+</sup> dendritic cells (DC). Splenic CD11b<sup>+</sup> DC from EGCG fed mice induced an increased frequency of Tregs via an IDO-dependent mechanism in in vitro cultures. Importantly, joint homogenates from EGCG-fed mice exhibited significantly increased levels of Nuclear Factor, Erythroid 2-Like 2 (Nrf-2) and Heme oxygenase-1 (HO-1) compared with PBS-fed mice. Conclusions: This is the first report of upregulation of the Nrf-2 antioxidant pathway in EGCG-mediated immunoregulation. EGCG ameliorated experimental arthritis in mice by eliciting IDO-producing DCs, increasing frequencies of T regs and inducing the activation of the Nrf-2 antioxidant pathway. It remains to be established whether EGCG is useful for the prevention and treatment of rheumatoid arthritis and other inflammatory disorders.

Original languageEnglish (US)
Article number53
JournalJournal of Inflammation
Volume12
Issue number1
DOIs
StatePublished - Sep 15 2015

Keywords

  • Collagen-induced arthritis
  • Green Tea (-)-epigallocatechin-3-gallate (EGCG)
  • Nrf-2 signaling pathway
  • Regulatory T cells

ASJC Scopus subject areas

  • Cell Biology
  • Clinical Biochemistry

Fingerprint Dive into the research topics of 'Green tea epigallocatechin-3-gallate suppresses autoimmune arthritis through indoleamine-2,3-dioxygenase expressing dendritic cells and the nuclear factor, erythroid 2-like 2 antioxidant pathway'. Together they form a unique fingerprint.

  • Cite this