Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice

Hisayuki Osanai, Takashi Kitamura, Jun Yamamoto

Research output: Contribution to journalArticle

Abstract

Multi-regional neural recordings can provide crucial information to understanding fine-timescale interactions between multiple brain regions. However, conventional microdrive designs often only allow use of one type of electrode to record from single or multiple regions, limiting the yield of single-unit or depth profile recordings. It also often limits the ability to combine electrode recordings with optogenetic tools to target pathway and/or cell type specific activity. Presented here is a hybrid microdrive array for freely moving mice to optimize yield and a description of its fabrication and reuse of the microdrive array. The current design employs nine tetrodes and one opto-silicon probe implanted in two different brain areas simultaneously in freely moving mice. The tetrodes and the opto-silicon probe are independently adjustable along the dorsoventral axis in the brain to maximize the yield of unit and oscillatory activities. This microdrive array also incorporates a set-up for light, mediating optogenetic manipulation to investigate the regional- or cell type-specific responses and functions of long-range neural circuits. In addition, the opto-silicon probe can be safely recovered and reused after each experiment. Because the microdrive array consists of 3D-printed parts, the design of microdrives can be easily modified to accommodate various settings. First described is the design of the microdrive array and how to attach the optical fiber to a silicon probe for optogenetics experiments, followed by fabrication of the tetrode bundle and implantation of the array into a mouse brain. The recording of local field potentials and unit spiking combined with optogenetic stimulation also demonstrate feasibility of the microdrive array system in freely moving mice.

Original languageEnglish (US)
JournalJournal of visualized experiments : JoVE
Issue number150
DOIs
StatePublished - Aug 10 2019

Fingerprint

Optogenetics
Silicon
Hybrid systems
Tetrodes
Brain
Electrodes
Optical Fibers
Fabrication
Optical fibers
Experiments
Light
Networks (circuits)

ASJC Scopus subject areas

  • Neuroscience(all)
  • Chemical Engineering(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Cite this

@article{f3bb4c8adf2b482b8bfbe68686d10bdb,
title = "Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice",
abstract = "Multi-regional neural recordings can provide crucial information to understanding fine-timescale interactions between multiple brain regions. However, conventional microdrive designs often only allow use of one type of electrode to record from single or multiple regions, limiting the yield of single-unit or depth profile recordings. It also often limits the ability to combine electrode recordings with optogenetic tools to target pathway and/or cell type specific activity. Presented here is a hybrid microdrive array for freely moving mice to optimize yield and a description of its fabrication and reuse of the microdrive array. The current design employs nine tetrodes and one opto-silicon probe implanted in two different brain areas simultaneously in freely moving mice. The tetrodes and the opto-silicon probe are independently adjustable along the dorsoventral axis in the brain to maximize the yield of unit and oscillatory activities. This microdrive array also incorporates a set-up for light, mediating optogenetic manipulation to investigate the regional- or cell type-specific responses and functions of long-range neural circuits. In addition, the opto-silicon probe can be safely recovered and reused after each experiment. Because the microdrive array consists of 3D-printed parts, the design of microdrives can be easily modified to accommodate various settings. First described is the design of the microdrive array and how to attach the optical fiber to a silicon probe for optogenetics experiments, followed by fabrication of the tetrode bundle and implantation of the array into a mouse brain. The recording of local field potentials and unit spiking combined with optogenetic stimulation also demonstrate feasibility of the microdrive array system in freely moving mice.",
author = "Hisayuki Osanai and Takashi Kitamura and Jun Yamamoto",
year = "2019",
month = "8",
day = "10",
doi = "10.3791/60028",
language = "English (US)",
journal = "Journal of Visualized Experiments",
issn = "1940-087X",
publisher = "MYJoVE Corporation",
number = "150",

}

TY - JOUR

T1 - Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice

AU - Osanai, Hisayuki

AU - Kitamura, Takashi

AU - Yamamoto, Jun

PY - 2019/8/10

Y1 - 2019/8/10

N2 - Multi-regional neural recordings can provide crucial information to understanding fine-timescale interactions between multiple brain regions. However, conventional microdrive designs often only allow use of one type of electrode to record from single or multiple regions, limiting the yield of single-unit or depth profile recordings. It also often limits the ability to combine electrode recordings with optogenetic tools to target pathway and/or cell type specific activity. Presented here is a hybrid microdrive array for freely moving mice to optimize yield and a description of its fabrication and reuse of the microdrive array. The current design employs nine tetrodes and one opto-silicon probe implanted in two different brain areas simultaneously in freely moving mice. The tetrodes and the opto-silicon probe are independently adjustable along the dorsoventral axis in the brain to maximize the yield of unit and oscillatory activities. This microdrive array also incorporates a set-up for light, mediating optogenetic manipulation to investigate the regional- or cell type-specific responses and functions of long-range neural circuits. In addition, the opto-silicon probe can be safely recovered and reused after each experiment. Because the microdrive array consists of 3D-printed parts, the design of microdrives can be easily modified to accommodate various settings. First described is the design of the microdrive array and how to attach the optical fiber to a silicon probe for optogenetics experiments, followed by fabrication of the tetrode bundle and implantation of the array into a mouse brain. The recording of local field potentials and unit spiking combined with optogenetic stimulation also demonstrate feasibility of the microdrive array system in freely moving mice.

AB - Multi-regional neural recordings can provide crucial information to understanding fine-timescale interactions between multiple brain regions. However, conventional microdrive designs often only allow use of one type of electrode to record from single or multiple regions, limiting the yield of single-unit or depth profile recordings. It also often limits the ability to combine electrode recordings with optogenetic tools to target pathway and/or cell type specific activity. Presented here is a hybrid microdrive array for freely moving mice to optimize yield and a description of its fabrication and reuse of the microdrive array. The current design employs nine tetrodes and one opto-silicon probe implanted in two different brain areas simultaneously in freely moving mice. The tetrodes and the opto-silicon probe are independently adjustable along the dorsoventral axis in the brain to maximize the yield of unit and oscillatory activities. This microdrive array also incorporates a set-up for light, mediating optogenetic manipulation to investigate the regional- or cell type-specific responses and functions of long-range neural circuits. In addition, the opto-silicon probe can be safely recovered and reused after each experiment. Because the microdrive array consists of 3D-printed parts, the design of microdrives can be easily modified to accommodate various settings. First described is the design of the microdrive array and how to attach the optical fiber to a silicon probe for optogenetics experiments, followed by fabrication of the tetrode bundle and implantation of the array into a mouse brain. The recording of local field potentials and unit spiking combined with optogenetic stimulation also demonstrate feasibility of the microdrive array system in freely moving mice.

UR - http://www.scopus.com/inward/record.url?scp=85071517559&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071517559&partnerID=8YFLogxK

U2 - 10.3791/60028

DO - 10.3791/60028

M3 - Article

JO - Journal of Visualized Experiments

JF - Journal of Visualized Experiments

SN - 1940-087X

IS - 150

ER -