Identification of a novel actin binding motif in smooth muscle myosin light chain kinase

Lula Smith, Xujun Su, Pei Ju Lin, Gang Zhi, James T. Stull

Research output: Contribution to journalArticle

52 Scopus citations

Abstract

Phosphorylation of the 20-kDa regulatory light chain of myosin catalyzed by a Ca2+/calmodulin-dependent myosin light chain kinase is important in the initiation of smooth muscle contraction and other contractile processes in non-muscle cells. It has been previously shown that residues 1-142 of smooth muscle myosin light chain kinase are necessary for high-affinity binding to actin-containing filaments in cells (1). To further localize the region of the kinase required for binding, a series of N-terminal deletion mutants as well as several N-terminal glutathione S-transferase fusion proteins were constructed. Cosedimentation assays showed that a peptide containing residues 1-75 binds to purified smooth muscle myofilaments. Furthermore, the N-terminal peptide was sufficient for high-affinity binding to actin stress fibers in smooth muscle cells in vivo. Alanine scanning mutagenesis in the fusion protein identified residues Asp-30, Phe-31, Arg-32, and Leu-35 as important for binding in vitro. There are two additional DFRXXL motifs located at residues 2-7 and 58-63. The DFR residues in these three motifs were individually replaced by alanine residues in the full-length kinase. Each of these mutations significantly decreased myosin light chain kinase binding to myofilaments in vitro, and each abolished high-affinity binding to actin-containing filaments in smooth muscle cells in vivo. These results identify a unique structural motif comprised of three repeat consensus sequences in the N terminus of myosin light chain kinase necessary for high-affinity binding to actin-containing filaments.

Original languageEnglish (US)
Pages (from-to)29433-29438
Number of pages6
JournalJournal of Biological Chemistry
Volume274
Issue number41
DOIs
StatePublished - Oct 8 1999

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Identification of a novel actin binding motif in smooth muscle myosin light chain kinase'. Together they form a unique fingerprint.

  • Cite this