Imaging β-galactosidase activity in human tumor xenografts and transgenic mice using a chemiluminescent substrate

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

Background: Detection of enzyme activity or transgene expression offers potential insight into developmental biology, disease progression, and potentially personalized medicine. Historically, the lacZ gene encoding the enzyme b-galactosidase has been the most common reporter gene and many chromogenic and fluorogenic substrates are well established, but limited to histology or in vitro assays. We now present a novel approach for in vivo detection of b-galactosidase using optical imaging to detect light emission following administration of the chemiluminescent 1,2-dioxetane substrate Galacto- Light PlusTM. Methodology and Principal Findings: B-gal activity was visualized in stably transfected human MCF7-lacZ tumors growing in mice. LacZ tumors were identified versus contralateral wild type tumors as controls, based on two- to tenfold greater light emission following direct intra tumoral or intravenous administration of reporter substrate. The 1,2-dioxetane substrate is commercially available as a kit for microplate-based assays for β-gal detection, and we have adapted it for in vivo application. Typically, 100 μl substrate mixture was administered intravenously and light emission was detected from the lacZ tumor immediately with gradual decrease over the next 20 mins. Imaging was also undertaken in transgenic ROSA26 mice following subcutaneous or intravenous injection of substrate mixture. Conclusion and Significance: Light emission was detectable using standard instrumentation designed for more traditional bioluminescent imaging. Use of 1,2-dioxetane substrates to detect enzyme activity offers a new paradigm for non-invasive biochemistry in vivo.

Original languageEnglish (US)
Article numbere12024
JournalPLoS One
Volume5
Issue number8
DOIs
StatePublished - 2010

Fingerprint

Galactosidases
galactosidases
Heterografts
Human Activities
Transgenic Mice
Tumors
Light emission
image analysis
genetically modified organisms
Imaging techniques
Light
neoplasms
mice
Substrates
Neoplasms
intravenous injection
Enzyme activity
Enzymes
enzyme activity
Assays

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

@article{f16300674f514b4f97e70acbd5b7e772,
title = "Imaging β-galactosidase activity in human tumor xenografts and transgenic mice using a chemiluminescent substrate",
abstract = "Background: Detection of enzyme activity or transgene expression offers potential insight into developmental biology, disease progression, and potentially personalized medicine. Historically, the lacZ gene encoding the enzyme b-galactosidase has been the most common reporter gene and many chromogenic and fluorogenic substrates are well established, but limited to histology or in vitro assays. We now present a novel approach for in vivo detection of b-galactosidase using optical imaging to detect light emission following administration of the chemiluminescent 1,2-dioxetane substrate Galacto- Light PlusTM. Methodology and Principal Findings: B-gal activity was visualized in stably transfected human MCF7-lacZ tumors growing in mice. LacZ tumors were identified versus contralateral wild type tumors as controls, based on two- to tenfold greater light emission following direct intra tumoral or intravenous administration of reporter substrate. The 1,2-dioxetane substrate is commercially available as a kit for microplate-based assays for β-gal detection, and we have adapted it for in vivo application. Typically, 100 μl substrate mixture was administered intravenously and light emission was detected from the lacZ tumor immediately with gradual decrease over the next 20 mins. Imaging was also undertaken in transgenic ROSA26 mice following subcutaneous or intravenous injection of substrate mixture. Conclusion and Significance: Light emission was detectable using standard instrumentation designed for more traditional bioluminescent imaging. Use of 1,2-dioxetane substrates to detect enzyme activity offers a new paradigm for non-invasive biochemistry in vivo.",
author = "Li Liu and Mason, {Ralph P.}",
year = "2010",
doi = "10.1371/journal.pone.0012024",
language = "English (US)",
volume = "5",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "8",

}

TY - JOUR

T1 - Imaging β-galactosidase activity in human tumor xenografts and transgenic mice using a chemiluminescent substrate

AU - Liu, Li

AU - Mason, Ralph P.

PY - 2010

Y1 - 2010

N2 - Background: Detection of enzyme activity or transgene expression offers potential insight into developmental biology, disease progression, and potentially personalized medicine. Historically, the lacZ gene encoding the enzyme b-galactosidase has been the most common reporter gene and many chromogenic and fluorogenic substrates are well established, but limited to histology or in vitro assays. We now present a novel approach for in vivo detection of b-galactosidase using optical imaging to detect light emission following administration of the chemiluminescent 1,2-dioxetane substrate Galacto- Light PlusTM. Methodology and Principal Findings: B-gal activity was visualized in stably transfected human MCF7-lacZ tumors growing in mice. LacZ tumors were identified versus contralateral wild type tumors as controls, based on two- to tenfold greater light emission following direct intra tumoral or intravenous administration of reporter substrate. The 1,2-dioxetane substrate is commercially available as a kit for microplate-based assays for β-gal detection, and we have adapted it for in vivo application. Typically, 100 μl substrate mixture was administered intravenously and light emission was detected from the lacZ tumor immediately with gradual decrease over the next 20 mins. Imaging was also undertaken in transgenic ROSA26 mice following subcutaneous or intravenous injection of substrate mixture. Conclusion and Significance: Light emission was detectable using standard instrumentation designed for more traditional bioluminescent imaging. Use of 1,2-dioxetane substrates to detect enzyme activity offers a new paradigm for non-invasive biochemistry in vivo.

AB - Background: Detection of enzyme activity or transgene expression offers potential insight into developmental biology, disease progression, and potentially personalized medicine. Historically, the lacZ gene encoding the enzyme b-galactosidase has been the most common reporter gene and many chromogenic and fluorogenic substrates are well established, but limited to histology or in vitro assays. We now present a novel approach for in vivo detection of b-galactosidase using optical imaging to detect light emission following administration of the chemiluminescent 1,2-dioxetane substrate Galacto- Light PlusTM. Methodology and Principal Findings: B-gal activity was visualized in stably transfected human MCF7-lacZ tumors growing in mice. LacZ tumors were identified versus contralateral wild type tumors as controls, based on two- to tenfold greater light emission following direct intra tumoral or intravenous administration of reporter substrate. The 1,2-dioxetane substrate is commercially available as a kit for microplate-based assays for β-gal detection, and we have adapted it for in vivo application. Typically, 100 μl substrate mixture was administered intravenously and light emission was detected from the lacZ tumor immediately with gradual decrease over the next 20 mins. Imaging was also undertaken in transgenic ROSA26 mice following subcutaneous or intravenous injection of substrate mixture. Conclusion and Significance: Light emission was detectable using standard instrumentation designed for more traditional bioluminescent imaging. Use of 1,2-dioxetane substrates to detect enzyme activity offers a new paradigm for non-invasive biochemistry in vivo.

UR - http://www.scopus.com/inward/record.url?scp=77957778864&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77957778864&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0012024

DO - 10.1371/journal.pone.0012024

M3 - Article

VL - 5

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 8

M1 - e12024

ER -