Implementation and evaluation of various demons deformable image registration algorithms on a GPU

Xuejun Gu, Hubert Pan, Yun Liang, Richard Castillo, Deshan Yang, Dongju Choi, Edward Castillo, Amitava Majumdar, Thomas Guerrero, Steve B. Jiang

Research output: Contribution to journalArticlepeer-review

186 Scopus citations

Abstract

Online adaptive radiation therapy (ART) promises the ability to deliver an optimal treatment in response to daily patient anatomic variation. A major technical barrier for the clinical implementation of online ART is the requirement of rapid image segmentation. Deformable image registration (DIR) has been used as an automated segmentation method to transfer tumor/organ contours from the planning image to daily images. However, the current computational time of DIR is insufficient for online ART. In this work, this issue is addressed by using computer graphics processing units (GPUs). A gray-scale-based DIR algorithm called demons and five of its variants were implemented on GPUs using the compute unified device architecture (CUDA) programming environment. The spatial accuracy of these algorithms was evaluated over five sets of pulmonary 4D CT images with an average size of 256 × 256 × 100 and more than 1100 expert-determined landmark point pairs each. For all the testing scenarios presented in this paper, the GPU-based DIR computation required around 7 to 11 s to yield an average 3D error ranging from 1.5 to 1.8 mm. It is interesting to find out that the original passive force demons algorithms outperform subsequently proposed variants based on the combination of accuracy, efficiency and ease of implementation.

Original languageEnglish (US)
Pages (from-to)207-219
Number of pages13
JournalPhysics in medicine and biology
Volume55
Issue number1
DOIs
StatePublished - Jan 7 2010

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Implementation and evaluation of various demons deformable image registration algorithms on a GPU'. Together they form a unique fingerprint.

Cite this