In vivo evaluation of a closed loop monitoring strategy for induced paralysis

Deepak Ramakrishna, Khosrow Behbehani, Kevin Klein, Jeffrey Mokhtar, Wolf W. Von Maltzahn, Robert C. Eberhart, Michael Dollar

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Objective. Reliable closed loop infusion systems for regulating paralysis level can be a great convenience to the anesthesiologists in automating their task. This paper describes the in vivo performance evaluation of a self-tuning controller that is designed to accommodate large varations in patient drug sensitivity, drug action delays and environmental interfering noise. Methods. The infusion system was evaluated in six adult mongrel dogs. Following the manual induction of paralysis by an anesthesiologist, the controller regulated the infusion of vecuronium to maintain a desired level of paralysis. The integrated EMG response of the hypothenar muscle to a train-of-four stimulation of the ulnar nerve quantified the depth of paralysis. The controller's robustness was tested by contaminating the sensed twitch signal with electrocautery noise and electrode disconnection. Results. The controller reached the initial level of paralysis of 100% in about 4.0 minutes and arrived at the desired level of 90% with an overshoot of 6.38% (± 6.82). It maintained the desired level of paralysis with a 2.04% (± 1.20) mean offset at 90% and 0.4% (± 0.5) mean offset at 80% steady state level, respectively. The mean infusion rate to sustain 90% and 80% paralysis were 2.70 (± 2.05) and 2.15 (± 2.57) ((mg/kg)/min), respectively. Conclusions. The system adapted to a large variation in the sample subject drug sensitivity. It remained stable despite large amplitude disturbances and maintained the paralysis at the desired level following the removal of the disturbances.

Original languageEnglish (US)
Pages (from-to)393-402
Number of pages10
JournalJournal of Clinical Monitoring and Computing
Volume14
Issue number6
DOIs
StatePublished - Aug 1998

Keywords

  • Automatic control of induced paralysis
  • Automatic infusion of anesthetic agents
  • In vivo automatic control of paralysis
  • Vecuronium

ASJC Scopus subject areas

  • Health Informatics
  • Critical Care and Intensive Care Medicine
  • Anesthesiology and Pain Medicine

Fingerprint

Dive into the research topics of 'In vivo evaluation of a closed loop monitoring strategy for induced paralysis'. Together they form a unique fingerprint.

Cite this