TY - JOUR
T1 - Increased peripheral interleukin 10 relate to white matter integrity in schizophrenia
AU - Fu, Gui
AU - Zhang, Wenjing
AU - Dai, Jing
AU - Liu, Jieke
AU - Li, Fei
AU - Wu, Dongsheng
AU - Xiao, Yuan
AU - Shah, Chandan
AU - Sweeney, John A.
AU - Wu, Min
AU - Lui, Su
N1 - Funding Information:
This study was supported by the National Natural Science Foundation of China (Grant Nos. 81671664 and 81621003). SL would also like to acknowledge the support from the Chang Jiang Scholars of China (Award No. Q2015154), the National Program for Support of Top-notch Young Professionals (National Program for Special Support of Eminent Professionals, Organization Department of the Communist Party of China Central Committee, Award No. W02070140), the Fundamental Research Funds for the Central Universities (Grant No. 2018SCUH0011), and the Science and Technology Project of the Health Planning Committee of Sichuan (Grant No. 18ZD035).
Funding Information:
We would like to acknowledge all participants of study and the staff of the Department of Psychiatry, West China Hospital of Sichuan University, in the implementation of this project.
Publisher Copyright:
© 2019 Fu, Zhang, Dai, Liu, Li, Wu, Xiao, Shah, Sweeney, Wu and Lui. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
PY - 2019
Y1 - 2019
N2 - Background: Schizophrenia is characterized by the disruption of microstructural white matter (WM) integrity, while the pathogenesis remains unclear. Inflammation has been associated with the WM pathology in schizophrenia. Interleukin 10 (IL-10) has been proven to be related to schizophrenia in both animal and human models. The aim of this study was to explore whether peripheral IL-10 was associated with microstructural WM integrity in schizophrenia. Methods: A total of 47 patients with schizophrenia (SZ) and 49 healthy controls (HC) underwent diffusion tensor imaging and venous blood sampling. Tract-based spatial statistics was conducted to explore the differences in fractional anisotropy (FA), radial diffusivity (RD), mean diffusivity (MD), and axial diffusivity (AD) between patients and controls. A quantitative chemiluminescence assay was performed to measure peripheral IL-10 levels. General linear regression analysis using a stepwise method was applied to examine the relationship between peripheral IL-10 and diffusion measures. Results: Compared with the HC, peripheral IL-10 levels were higher and a significant reduction of FA and AD, and increase of RD and MD were observed in SZ (corrected p < 0.05). A regression analysis revealed that peripheral IL-10 was negatively correlated with FA in the right posterior thalamic radiation and left inferior fronto-occipital fasciculus, in SZ (β = -0.51, p = 0.01; β = -0.47, p = 0.02, respectively) but not in HC (β = -0.01, p = 0.95; β = -0.003, p = 0.98, respectively), and the differences in regression curves were significant (z = 2.50, p = 0.01; z = 2.37, p = 0.02, respectively). IL-10 was negatively connected with MD in the right parietal arcuate fasciculus (β = -0.40, p = 0.048) and body of the corpus callosum (β = -0.43, p = 0.03) in SZ, while not in HC. The magnitude of correlation in the patient and control group was different (z = 2.48, p = 0.01 and z = 2.61, p < 0.01, respectively). In addition, IL-10 was positively correlated with RD in the right parietal arcuate fasciculus in patients (β = 0.45, p = 0.04) but not in HC (β = 0.26, p = 0.94), but the correlation coefficients were not significant (z = 0.98, p = 0.32). Conclusion: Our findings demonstrated that elevated peripheral IL-10 levels were associated with the disruption of microstructural WM integrity in schizophrenia, supporting the notion that inflammation plays a regulatory role in the pathology of microstructural WM and is associated with schizophrenia.
AB - Background: Schizophrenia is characterized by the disruption of microstructural white matter (WM) integrity, while the pathogenesis remains unclear. Inflammation has been associated with the WM pathology in schizophrenia. Interleukin 10 (IL-10) has been proven to be related to schizophrenia in both animal and human models. The aim of this study was to explore whether peripheral IL-10 was associated with microstructural WM integrity in schizophrenia. Methods: A total of 47 patients with schizophrenia (SZ) and 49 healthy controls (HC) underwent diffusion tensor imaging and venous blood sampling. Tract-based spatial statistics was conducted to explore the differences in fractional anisotropy (FA), radial diffusivity (RD), mean diffusivity (MD), and axial diffusivity (AD) between patients and controls. A quantitative chemiluminescence assay was performed to measure peripheral IL-10 levels. General linear regression analysis using a stepwise method was applied to examine the relationship between peripheral IL-10 and diffusion measures. Results: Compared with the HC, peripheral IL-10 levels were higher and a significant reduction of FA and AD, and increase of RD and MD were observed in SZ (corrected p < 0.05). A regression analysis revealed that peripheral IL-10 was negatively correlated with FA in the right posterior thalamic radiation and left inferior fronto-occipital fasciculus, in SZ (β = -0.51, p = 0.01; β = -0.47, p = 0.02, respectively) but not in HC (β = -0.01, p = 0.95; β = -0.003, p = 0.98, respectively), and the differences in regression curves were significant (z = 2.50, p = 0.01; z = 2.37, p = 0.02, respectively). IL-10 was negatively connected with MD in the right parietal arcuate fasciculus (β = -0.40, p = 0.048) and body of the corpus callosum (β = -0.43, p = 0.03) in SZ, while not in HC. The magnitude of correlation in the patient and control group was different (z = 2.48, p = 0.01 and z = 2.61, p < 0.01, respectively). In addition, IL-10 was positively correlated with RD in the right parietal arcuate fasciculus in patients (β = 0.45, p = 0.04) but not in HC (β = 0.26, p = 0.94), but the correlation coefficients were not significant (z = 0.98, p = 0.32). Conclusion: Our findings demonstrated that elevated peripheral IL-10 levels were associated with the disruption of microstructural WM integrity in schizophrenia, supporting the notion that inflammation plays a regulatory role in the pathology of microstructural WM and is associated with schizophrenia.
KW - Diffusion tensor imaging
KW - Inflammation
KW - Interleukin 10
KW - Schizophrenia
KW - White matter
UR - http://www.scopus.com/inward/record.url?scp=85065826595&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85065826595&partnerID=8YFLogxK
U2 - 10.3389/fnins.2019.00052
DO - 10.3389/fnins.2019.00052
M3 - Article
C2 - 30792621
AN - SCOPUS:85065826595
VL - 13
JO - Frontiers in Neuroscience
JF - Frontiers in Neuroscience
SN - 1662-4548
IS - FEB
M1 - 52
ER -