Integrated analysis of mutation data from various sources identifies key genes and signaling pathways in hepatocellular carcinoma

Yuannv Zhang, Zhaoping Qiu, Lin Wei, Ruqi Tang, Baofeng Lian, Yingjun Zhao, Xianghuo He, Lu Xie

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Background: Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings: In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions: Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.

Original languageEnglish (US)
Article numbere100854
JournalPloS one
Issue number7
StatePublished - Jul 2 2014
Externally publishedYes

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Integrated analysis of mutation data from various sources identifies key genes and signaling pathways in hepatocellular carcinoma'. Together they form a unique fingerprint.

Cite this