Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm(-/-) mice

Yang Xu, Eva Marie Yang, James Brugarolas, Tyler Jacks, David Baltimore

Research output: Contribution to journalArticle

86 Citations (Scopus)

Abstract

Disruption of the mouse Atm gene, whose human counterpart is consistently mutated in ataxia-telangiectasia (A-T) patients, creates an A-T mouse model exhibiting most of the A-T-related systematic and cellular defects. While ATM plays a major role in signaling the p53 response to DNA strand break damage, Atto(-/-) p53(-/-) mice develop lymphomas earlier than Atm(-/-) or p53(-/-) mice, indicating that mutations in these two genes lead to synergy in tumorigehesis. The cell cycle G1/S checkpoint is abolished in Atm(-/-) p53(-/-) mouse embryonic fibroblasts (MEFs) following γ- irradiation, suggesting that the partial G1 cell cycle arrest in Atm(-/-) cells following γ-irradiation is due to the residual p53 response in these cells. In addition, the Atm(-/-) p21(-/-) MEFs are more severely defective in their cell cycle G1 arrest following γ-irradiation than Atm(-/-) and p21(- /-) MEFs. The Arm(-/-) MEFs exhibit multiple cellular proliferative defects in culture, and an increased constitutive level of p21 in these cells might account for these cellular proliferation defects. Consistent with this notion, Atm(-/-) p21(-/-) MEFs proliferate similarly to wild-type MEFs and exhibit no premature senescence. These cellular proliferative defects are also rescued in Atm(-/-) p53(-/-) MEFs and little p21 can be detected in these cells, indicating that the abnormal p21 protein level in Atm(-/-) cells is also p53 dependent and leads to the cellular proliferative defects in these cells. However, the p21 mRNA level in Atm(-/-) MEFs is lower than that in Atm(+/+) MEFs, suggesting that the higher level of constitutive p21 protein in Atm(-/-) MEFs is likely due to increased stability of the p21 protein.

Original languageEnglish (US)
Pages (from-to)4385-4390
Number of pages6
JournalMolecular and Cellular Biology
Volume18
Issue number7
StatePublished - Jul 1998

Fingerprint

Carcinogenesis
Fibroblasts
G1 Phase Cell Cycle Checkpoints
Ataxia Telangiectasia
DNA Breaks
Protein Stability
Genes
Lymphoma
Cell Proliferation
Messenger RNA
Mutation

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cell Biology

Cite this

Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm(-/-) mice. / Xu, Yang; Yang, Eva Marie; Brugarolas, James; Jacks, Tyler; Baltimore, David.

In: Molecular and Cellular Biology, Vol. 18, No. 7, 07.1998, p. 4385-4390.

Research output: Contribution to journalArticle

Xu, Yang ; Yang, Eva Marie ; Brugarolas, James ; Jacks, Tyler ; Baltimore, David. / Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm(-/-) mice. In: Molecular and Cellular Biology. 1998 ; Vol. 18, No. 7. pp. 4385-4390.
@article{b48644dc29c440cc86dc83af12633597,
title = "Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm(-/-) mice",
abstract = "Disruption of the mouse Atm gene, whose human counterpart is consistently mutated in ataxia-telangiectasia (A-T) patients, creates an A-T mouse model exhibiting most of the A-T-related systematic and cellular defects. While ATM plays a major role in signaling the p53 response to DNA strand break damage, Atto(-/-) p53(-/-) mice develop lymphomas earlier than Atm(-/-) or p53(-/-) mice, indicating that mutations in these two genes lead to synergy in tumorigehesis. The cell cycle G1/S checkpoint is abolished in Atm(-/-) p53(-/-) mouse embryonic fibroblasts (MEFs) following γ- irradiation, suggesting that the partial G1 cell cycle arrest in Atm(-/-) cells following γ-irradiation is due to the residual p53 response in these cells. In addition, the Atm(-/-) p21(-/-) MEFs are more severely defective in their cell cycle G1 arrest following γ-irradiation than Atm(-/-) and p21(- /-) MEFs. The Arm(-/-) MEFs exhibit multiple cellular proliferative defects in culture, and an increased constitutive level of p21 in these cells might account for these cellular proliferation defects. Consistent with this notion, Atm(-/-) p21(-/-) MEFs proliferate similarly to wild-type MEFs and exhibit no premature senescence. These cellular proliferative defects are also rescued in Atm(-/-) p53(-/-) MEFs and little p21 can be detected in these cells, indicating that the abnormal p21 protein level in Atm(-/-) cells is also p53 dependent and leads to the cellular proliferative defects in these cells. However, the p21 mRNA level in Atm(-/-) MEFs is lower than that in Atm(+/+) MEFs, suggesting that the higher level of constitutive p21 protein in Atm(-/-) MEFs is likely due to increased stability of the p21 protein.",
author = "Yang Xu and Yang, {Eva Marie} and James Brugarolas and Tyler Jacks and David Baltimore",
year = "1998",
month = "7",
language = "English (US)",
volume = "18",
pages = "4385--4390",
journal = "Molecular and Cellular Biology",
issn = "0270-7306",
publisher = "American Society for Microbiology",
number = "7",

}

TY - JOUR

T1 - Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm(-/-) mice

AU - Xu, Yang

AU - Yang, Eva Marie

AU - Brugarolas, James

AU - Jacks, Tyler

AU - Baltimore, David

PY - 1998/7

Y1 - 1998/7

N2 - Disruption of the mouse Atm gene, whose human counterpart is consistently mutated in ataxia-telangiectasia (A-T) patients, creates an A-T mouse model exhibiting most of the A-T-related systematic and cellular defects. While ATM plays a major role in signaling the p53 response to DNA strand break damage, Atto(-/-) p53(-/-) mice develop lymphomas earlier than Atm(-/-) or p53(-/-) mice, indicating that mutations in these two genes lead to synergy in tumorigehesis. The cell cycle G1/S checkpoint is abolished in Atm(-/-) p53(-/-) mouse embryonic fibroblasts (MEFs) following γ- irradiation, suggesting that the partial G1 cell cycle arrest in Atm(-/-) cells following γ-irradiation is due to the residual p53 response in these cells. In addition, the Atm(-/-) p21(-/-) MEFs are more severely defective in their cell cycle G1 arrest following γ-irradiation than Atm(-/-) and p21(- /-) MEFs. The Arm(-/-) MEFs exhibit multiple cellular proliferative defects in culture, and an increased constitutive level of p21 in these cells might account for these cellular proliferation defects. Consistent with this notion, Atm(-/-) p21(-/-) MEFs proliferate similarly to wild-type MEFs and exhibit no premature senescence. These cellular proliferative defects are also rescued in Atm(-/-) p53(-/-) MEFs and little p21 can be detected in these cells, indicating that the abnormal p21 protein level in Atm(-/-) cells is also p53 dependent and leads to the cellular proliferative defects in these cells. However, the p21 mRNA level in Atm(-/-) MEFs is lower than that in Atm(+/+) MEFs, suggesting that the higher level of constitutive p21 protein in Atm(-/-) MEFs is likely due to increased stability of the p21 protein.

AB - Disruption of the mouse Atm gene, whose human counterpart is consistently mutated in ataxia-telangiectasia (A-T) patients, creates an A-T mouse model exhibiting most of the A-T-related systematic and cellular defects. While ATM plays a major role in signaling the p53 response to DNA strand break damage, Atto(-/-) p53(-/-) mice develop lymphomas earlier than Atm(-/-) or p53(-/-) mice, indicating that mutations in these two genes lead to synergy in tumorigehesis. The cell cycle G1/S checkpoint is abolished in Atm(-/-) p53(-/-) mouse embryonic fibroblasts (MEFs) following γ- irradiation, suggesting that the partial G1 cell cycle arrest in Atm(-/-) cells following γ-irradiation is due to the residual p53 response in these cells. In addition, the Atm(-/-) p21(-/-) MEFs are more severely defective in their cell cycle G1 arrest following γ-irradiation than Atm(-/-) and p21(- /-) MEFs. The Arm(-/-) MEFs exhibit multiple cellular proliferative defects in culture, and an increased constitutive level of p21 in these cells might account for these cellular proliferation defects. Consistent with this notion, Atm(-/-) p21(-/-) MEFs proliferate similarly to wild-type MEFs and exhibit no premature senescence. These cellular proliferative defects are also rescued in Atm(-/-) p53(-/-) MEFs and little p21 can be detected in these cells, indicating that the abnormal p21 protein level in Atm(-/-) cells is also p53 dependent and leads to the cellular proliferative defects in these cells. However, the p21 mRNA level in Atm(-/-) MEFs is lower than that in Atm(+/+) MEFs, suggesting that the higher level of constitutive p21 protein in Atm(-/-) MEFs is likely due to increased stability of the p21 protein.

UR - http://www.scopus.com/inward/record.url?scp=0031806910&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031806910&partnerID=8YFLogxK

M3 - Article

C2 - 9632822

AN - SCOPUS:0031806910

VL - 18

SP - 4385

EP - 4390

JO - Molecular and Cellular Biology

JF - Molecular and Cellular Biology

SN - 0270-7306

IS - 7

ER -