Lactobacillus rhamnosus (LGG) Regulates IL-10 Signaling in the Developing Murine Colon through Upregulation of the IL-10R2 Receptor Subunit

Julie Mirpuri, Ilya Sotnikov, Loren Myers, Timothy L. Denning, Felix Yarovinsky, Charles A. Parkos, Patricia W. Denning, Nancy A. Louis

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

The intestinal microflora is critical for normal development, with aberrant colonization increasing the risk for necrotizing enterocolitis (NEC). In contrast, probiotic bacteria have been shown to decrease its incidence. Multiple pro- and anti-inflammatory cytokines have been identified as markers of intestinal inflammation, both in human patients with NEC and in models of immature intestine. Specifically, IL-10 signaling attenuates intestinal responses to gut dysbiosis, and disruption of this pathway exacerbates inflammation in murine models of NEC. However, the effects of probiotics on IL-10 and its signaling pathway, remain poorly defined. Real-time PCR profiling revealed developmental regulation of MIP-2, TNF-α, IL-12, IL-10 and the IL-10R2 subunit of the IL-10 receptor in immature murine colon, while the expression of IL-6 and IL-18 was independent of postnatal age. Enteral administration of the probiotic Lactobacillus rhamnosus GG (LGG) down-regulated the expression of TNF-α and MIP-2 and yet failed to alter IL-10 mRNA and protein expression. LGG did however induce mRNA expression of the IL-10R2 subunit of the IL-10 receptor. IL-10 receptor activation has been associated with signal transducer and activator of transcription (STAT) 3-dependent induction of members of the suppressors of cytokine signaling (SOCS) family. In 2 week-old mice, LGG also induced STAT3 phosphorylation, increased colonic expression of SOCS-3, and attenuated colonic production of MIP-2 and TNF-α. These LGG-dependent changes in phosphoSTAT3, SOCS3, MIP-2 and TNF-α were all inhibited by antibody-mediated blockade of the IL-10 receptor. Thus LGG decreased baseline proinflammatory cytokine expression in the developing colon through upregulation of IL-10 receptor-mediated signaling, most likely due to the combined induction of phospho-STAT3 and SOCS3. Furthermore, LGG-dependent increases in IL-10R2 were associated with reductions in TNF-α, MIP-2 and disease severity in a murine model of intestinal injury in the immature colon.

Original languageEnglish (US)
Article numbere51955
JournalPLoS One
Volume7
Issue number12
DOIs
StatePublished - Dec 18 2012

Fingerprint

Interleukin-10 Receptors
Lactobacillus rhamnosus
interleukin-10
Interleukin-10
colon
Colon
Up-Regulation
receptors
Cytokines
mice
enterocolitis
cytokines
Necrotizing Enterocolitis
probiotics
Probiotics
STAT3 Transcription Factor
immatures
Messenger RNA
Phosphorylation
Interleukin-18

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Lactobacillus rhamnosus (LGG) Regulates IL-10 Signaling in the Developing Murine Colon through Upregulation of the IL-10R2 Receptor Subunit. / Mirpuri, Julie; Sotnikov, Ilya; Myers, Loren; Denning, Timothy L.; Yarovinsky, Felix; Parkos, Charles A.; Denning, Patricia W.; Louis, Nancy A.

In: PLoS One, Vol. 7, No. 12, e51955, 18.12.2012.

Research output: Contribution to journalArticle

Mirpuri, Julie ; Sotnikov, Ilya ; Myers, Loren ; Denning, Timothy L. ; Yarovinsky, Felix ; Parkos, Charles A. ; Denning, Patricia W. ; Louis, Nancy A. / Lactobacillus rhamnosus (LGG) Regulates IL-10 Signaling in the Developing Murine Colon through Upregulation of the IL-10R2 Receptor Subunit. In: PLoS One. 2012 ; Vol. 7, No. 12.
@article{53f8aeba0a794c6ab9dfa4db862322c8,
title = "Lactobacillus rhamnosus (LGG) Regulates IL-10 Signaling in the Developing Murine Colon through Upregulation of the IL-10R2 Receptor Subunit",
abstract = "The intestinal microflora is critical for normal development, with aberrant colonization increasing the risk for necrotizing enterocolitis (NEC). In contrast, probiotic bacteria have been shown to decrease its incidence. Multiple pro- and anti-inflammatory cytokines have been identified as markers of intestinal inflammation, both in human patients with NEC and in models of immature intestine. Specifically, IL-10 signaling attenuates intestinal responses to gut dysbiosis, and disruption of this pathway exacerbates inflammation in murine models of NEC. However, the effects of probiotics on IL-10 and its signaling pathway, remain poorly defined. Real-time PCR profiling revealed developmental regulation of MIP-2, TNF-α, IL-12, IL-10 and the IL-10R2 subunit of the IL-10 receptor in immature murine colon, while the expression of IL-6 and IL-18 was independent of postnatal age. Enteral administration of the probiotic Lactobacillus rhamnosus GG (LGG) down-regulated the expression of TNF-α and MIP-2 and yet failed to alter IL-10 mRNA and protein expression. LGG did however induce mRNA expression of the IL-10R2 subunit of the IL-10 receptor. IL-10 receptor activation has been associated with signal transducer and activator of transcription (STAT) 3-dependent induction of members of the suppressors of cytokine signaling (SOCS) family. In 2 week-old mice, LGG also induced STAT3 phosphorylation, increased colonic expression of SOCS-3, and attenuated colonic production of MIP-2 and TNF-α. These LGG-dependent changes in phosphoSTAT3, SOCS3, MIP-2 and TNF-α were all inhibited by antibody-mediated blockade of the IL-10 receptor. Thus LGG decreased baseline proinflammatory cytokine expression in the developing colon through upregulation of IL-10 receptor-mediated signaling, most likely due to the combined induction of phospho-STAT3 and SOCS3. Furthermore, LGG-dependent increases in IL-10R2 were associated with reductions in TNF-α, MIP-2 and disease severity in a murine model of intestinal injury in the immature colon.",
author = "Julie Mirpuri and Ilya Sotnikov and Loren Myers and Denning, {Timothy L.} and Felix Yarovinsky and Parkos, {Charles A.} and Denning, {Patricia W.} and Louis, {Nancy A.}",
year = "2012",
month = "12",
day = "18",
doi = "10.1371/journal.pone.0051955",
language = "English (US)",
volume = "7",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "12",

}

TY - JOUR

T1 - Lactobacillus rhamnosus (LGG) Regulates IL-10 Signaling in the Developing Murine Colon through Upregulation of the IL-10R2 Receptor Subunit

AU - Mirpuri, Julie

AU - Sotnikov, Ilya

AU - Myers, Loren

AU - Denning, Timothy L.

AU - Yarovinsky, Felix

AU - Parkos, Charles A.

AU - Denning, Patricia W.

AU - Louis, Nancy A.

PY - 2012/12/18

Y1 - 2012/12/18

N2 - The intestinal microflora is critical for normal development, with aberrant colonization increasing the risk for necrotizing enterocolitis (NEC). In contrast, probiotic bacteria have been shown to decrease its incidence. Multiple pro- and anti-inflammatory cytokines have been identified as markers of intestinal inflammation, both in human patients with NEC and in models of immature intestine. Specifically, IL-10 signaling attenuates intestinal responses to gut dysbiosis, and disruption of this pathway exacerbates inflammation in murine models of NEC. However, the effects of probiotics on IL-10 and its signaling pathway, remain poorly defined. Real-time PCR profiling revealed developmental regulation of MIP-2, TNF-α, IL-12, IL-10 and the IL-10R2 subunit of the IL-10 receptor in immature murine colon, while the expression of IL-6 and IL-18 was independent of postnatal age. Enteral administration of the probiotic Lactobacillus rhamnosus GG (LGG) down-regulated the expression of TNF-α and MIP-2 and yet failed to alter IL-10 mRNA and protein expression. LGG did however induce mRNA expression of the IL-10R2 subunit of the IL-10 receptor. IL-10 receptor activation has been associated with signal transducer and activator of transcription (STAT) 3-dependent induction of members of the suppressors of cytokine signaling (SOCS) family. In 2 week-old mice, LGG also induced STAT3 phosphorylation, increased colonic expression of SOCS-3, and attenuated colonic production of MIP-2 and TNF-α. These LGG-dependent changes in phosphoSTAT3, SOCS3, MIP-2 and TNF-α were all inhibited by antibody-mediated blockade of the IL-10 receptor. Thus LGG decreased baseline proinflammatory cytokine expression in the developing colon through upregulation of IL-10 receptor-mediated signaling, most likely due to the combined induction of phospho-STAT3 and SOCS3. Furthermore, LGG-dependent increases in IL-10R2 were associated with reductions in TNF-α, MIP-2 and disease severity in a murine model of intestinal injury in the immature colon.

AB - The intestinal microflora is critical for normal development, with aberrant colonization increasing the risk for necrotizing enterocolitis (NEC). In contrast, probiotic bacteria have been shown to decrease its incidence. Multiple pro- and anti-inflammatory cytokines have been identified as markers of intestinal inflammation, both in human patients with NEC and in models of immature intestine. Specifically, IL-10 signaling attenuates intestinal responses to gut dysbiosis, and disruption of this pathway exacerbates inflammation in murine models of NEC. However, the effects of probiotics on IL-10 and its signaling pathway, remain poorly defined. Real-time PCR profiling revealed developmental regulation of MIP-2, TNF-α, IL-12, IL-10 and the IL-10R2 subunit of the IL-10 receptor in immature murine colon, while the expression of IL-6 and IL-18 was independent of postnatal age. Enteral administration of the probiotic Lactobacillus rhamnosus GG (LGG) down-regulated the expression of TNF-α and MIP-2 and yet failed to alter IL-10 mRNA and protein expression. LGG did however induce mRNA expression of the IL-10R2 subunit of the IL-10 receptor. IL-10 receptor activation has been associated with signal transducer and activator of transcription (STAT) 3-dependent induction of members of the suppressors of cytokine signaling (SOCS) family. In 2 week-old mice, LGG also induced STAT3 phosphorylation, increased colonic expression of SOCS-3, and attenuated colonic production of MIP-2 and TNF-α. These LGG-dependent changes in phosphoSTAT3, SOCS3, MIP-2 and TNF-α were all inhibited by antibody-mediated blockade of the IL-10 receptor. Thus LGG decreased baseline proinflammatory cytokine expression in the developing colon through upregulation of IL-10 receptor-mediated signaling, most likely due to the combined induction of phospho-STAT3 and SOCS3. Furthermore, LGG-dependent increases in IL-10R2 were associated with reductions in TNF-α, MIP-2 and disease severity in a murine model of intestinal injury in the immature colon.

UR - http://www.scopus.com/inward/record.url?scp=84871316728&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84871316728&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0051955

DO - 10.1371/journal.pone.0051955

M3 - Article

C2 - 23272193

AN - SCOPUS:84871316728

VL - 7

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 12

M1 - e51955

ER -