Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system

C. M. Ma, T. Pawlicki, S. B. Jiang, J. S. Li, J. Deng, E. Mok, A. Kapur, L. Xing, L. Ma, A. L. Boyer

Research output: Contribution to journalArticlepeer-review

140 Scopus citations

Abstract

The purpose of this work was to use Monte Carlo simulations to verify the accuracy of the dose distributions from a commercial treatment planning optimization system (Corvus, Nomos Corp., Sewickley, PA) for intensity-modulated radiotherapy (IMRT). A Monte Carlo treatment planning system has been implemented clinically to improve and verify the accuracy of radiotherapy dose calculations. Further modifications to the system were made to compute the dose in a patient for multiple fixed-gantry IMRT fields. The dose distributions in the experimental phantoms and in the patients were calculated and used to verify the optimized treatment plans generated by the Corvus system. The Monte Carlo calculated IMRT dose distributions agreed with the measurements to within 2% of the maximum dose for all the beam energies and field sizes for both the homogeneous and heterogeneous phantoms. The dose distributions predicted by the Corvus system, which employs a finite-size pencil beam (FSPB) algorithm, agreed with the Monte Carlo simulations and measurements to within 4% in a cylindrical water phantom with various hypothetical target shapes. Discrepancies of more than 5% (relative to the prescribed target dose) in the target region and over 20% in the critical structures were found in some IMRT patient calculations. The FSPB algorithm as implemented in the Corvus system is adequate for homogeneous phantoms (such as prostate) but may result in significant under- or over-estimation of the dose in some cases involving heterogeneities such as the air-tissue, lung-tissue and tissue-bone interfaces.

Original languageEnglish (US)
Pages (from-to)2483-2495
Number of pages13
JournalPhysics in medicine and biology
Volume45
Issue number9
DOIs
StatePublished - 2000

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system'. Together they form a unique fingerprint.

Cite this