Pentobarbital Produces Activation and Block of α 1 β 2γ 2S GABA A receptors in rapidly perfused whole cells and membrane patches

Divergent results can be explained by pharmacokinetics

Kevin J. Gingrich, Paul M. Burkat, William A. Roberts

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Millimolar concentrations of the barbiturate pentobarbital (PB) activate γ -aminobutyric acid (GABA) type A receptors (GABARs) and cause blockade reported by a paradoxical current increase or " tail " upon washout. To explore the mechanism of blockade, we investigated PB-triggered currents of recombinant α 1 β 2γ 2S GABARs in whole cells and outside-out membrane patches using rapid perfusion. Whole cell currents showed characteristic bellshaped concentration dependence where high concentrations triggered tail currents with peak amplitudes similar to those during PB application. Tail current time courses could not be described by multi-exponential functions at high concentrations ( ≥= 3,000 μ M). Deactivation time course decayed over seconds and was slowed by increasing PB concentration and application time. In contrast, macropatch tail currents manifested eightfold greater relative amplitude, were described by multi-exponential functions, and had millisecond rise times; deactivation occurred over fractions of seconds and was insensitive to PB concentration and application time. A parsimonious gating model was constructed that accounts for macropatch results ( " patch " model). Lipophilic drug molecules migrate slowly through cells due to avid partitioning into lipophilic subcellular compartments. Inclusion of such a pharmacokinetic compartment into the patch model introduced a slow kinetic component in the extracellular exchange time course, thereby providing recapitulation of divergent whole cell results. GABA co-application potentiated PB blockade. Overall, the results indicate that block is produced by PB concentrations sixfold lower than for activation involving at least three inhibitory PB binding sites, suggest a role of blocked channels in GABA-triggered activity at therapeutic PB concentrations, and raise an important technical question regarding the effective rate of exchange during rapid perfusion of whole cells with PB.

Original languageEnglish (US)
Pages (from-to)171-188
Number of pages18
JournalJournal of General Physiology
Volume133
Issue number2
DOIs
StatePublished - Feb 2009

Fingerprint

Pentobarbital
GABA-A Receptors
Pharmacokinetics
Cell Membrane
gamma-Aminobutyric Acid
Perfusion
Aminobutyrates
Binding Sites
Membranes

ASJC Scopus subject areas

  • Physiology
  • Medicine(all)

Cite this

@article{bae505b57d6844ec92d1659968627181,
title = "Pentobarbital Produces Activation and Block of α 1 β 2γ 2S GABA A receptors in rapidly perfused whole cells and membrane patches: Divergent results can be explained by pharmacokinetics",
abstract = "Millimolar concentrations of the barbiturate pentobarbital (PB) activate γ -aminobutyric acid (GABA) type A receptors (GABARs) and cause blockade reported by a paradoxical current increase or {"} tail {"} upon washout. To explore the mechanism of blockade, we investigated PB-triggered currents of recombinant α 1 β 2γ 2S GABARs in whole cells and outside-out membrane patches using rapid perfusion. Whole cell currents showed characteristic bellshaped concentration dependence where high concentrations triggered tail currents with peak amplitudes similar to those during PB application. Tail current time courses could not be described by multi-exponential functions at high concentrations ( ≥= 3,000 μ M). Deactivation time course decayed over seconds and was slowed by increasing PB concentration and application time. In contrast, macropatch tail currents manifested eightfold greater relative amplitude, were described by multi-exponential functions, and had millisecond rise times; deactivation occurred over fractions of seconds and was insensitive to PB concentration and application time. A parsimonious gating model was constructed that accounts for macropatch results ( {"} patch {"} model). Lipophilic drug molecules migrate slowly through cells due to avid partitioning into lipophilic subcellular compartments. Inclusion of such a pharmacokinetic compartment into the patch model introduced a slow kinetic component in the extracellular exchange time course, thereby providing recapitulation of divergent whole cell results. GABA co-application potentiated PB blockade. Overall, the results indicate that block is produced by PB concentrations sixfold lower than for activation involving at least three inhibitory PB binding sites, suggest a role of blocked channels in GABA-triggered activity at therapeutic PB concentrations, and raise an important technical question regarding the effective rate of exchange during rapid perfusion of whole cells with PB.",
author = "Gingrich, {Kevin J.} and Burkat, {Paul M.} and Roberts, {William A.}",
year = "2009",
month = "2",
doi = "10.1085/jgp.200810081",
language = "English (US)",
volume = "133",
pages = "171--188",
journal = "Journal of General Physiology",
issn = "0022-1295",
publisher = "Rockefeller University Press",
number = "2",

}

TY - JOUR

T1 - Pentobarbital Produces Activation and Block of α 1 β 2γ 2S GABA A receptors in rapidly perfused whole cells and membrane patches

T2 - Divergent results can be explained by pharmacokinetics

AU - Gingrich, Kevin J.

AU - Burkat, Paul M.

AU - Roberts, William A.

PY - 2009/2

Y1 - 2009/2

N2 - Millimolar concentrations of the barbiturate pentobarbital (PB) activate γ -aminobutyric acid (GABA) type A receptors (GABARs) and cause blockade reported by a paradoxical current increase or " tail " upon washout. To explore the mechanism of blockade, we investigated PB-triggered currents of recombinant α 1 β 2γ 2S GABARs in whole cells and outside-out membrane patches using rapid perfusion. Whole cell currents showed characteristic bellshaped concentration dependence where high concentrations triggered tail currents with peak amplitudes similar to those during PB application. Tail current time courses could not be described by multi-exponential functions at high concentrations ( ≥= 3,000 μ M). Deactivation time course decayed over seconds and was slowed by increasing PB concentration and application time. In contrast, macropatch tail currents manifested eightfold greater relative amplitude, were described by multi-exponential functions, and had millisecond rise times; deactivation occurred over fractions of seconds and was insensitive to PB concentration and application time. A parsimonious gating model was constructed that accounts for macropatch results ( " patch " model). Lipophilic drug molecules migrate slowly through cells due to avid partitioning into lipophilic subcellular compartments. Inclusion of such a pharmacokinetic compartment into the patch model introduced a slow kinetic component in the extracellular exchange time course, thereby providing recapitulation of divergent whole cell results. GABA co-application potentiated PB blockade. Overall, the results indicate that block is produced by PB concentrations sixfold lower than for activation involving at least three inhibitory PB binding sites, suggest a role of blocked channels in GABA-triggered activity at therapeutic PB concentrations, and raise an important technical question regarding the effective rate of exchange during rapid perfusion of whole cells with PB.

AB - Millimolar concentrations of the barbiturate pentobarbital (PB) activate γ -aminobutyric acid (GABA) type A receptors (GABARs) and cause blockade reported by a paradoxical current increase or " tail " upon washout. To explore the mechanism of blockade, we investigated PB-triggered currents of recombinant α 1 β 2γ 2S GABARs in whole cells and outside-out membrane patches using rapid perfusion. Whole cell currents showed characteristic bellshaped concentration dependence where high concentrations triggered tail currents with peak amplitudes similar to those during PB application. Tail current time courses could not be described by multi-exponential functions at high concentrations ( ≥= 3,000 μ M). Deactivation time course decayed over seconds and was slowed by increasing PB concentration and application time. In contrast, macropatch tail currents manifested eightfold greater relative amplitude, were described by multi-exponential functions, and had millisecond rise times; deactivation occurred over fractions of seconds and was insensitive to PB concentration and application time. A parsimonious gating model was constructed that accounts for macropatch results ( " patch " model). Lipophilic drug molecules migrate slowly through cells due to avid partitioning into lipophilic subcellular compartments. Inclusion of such a pharmacokinetic compartment into the patch model introduced a slow kinetic component in the extracellular exchange time course, thereby providing recapitulation of divergent whole cell results. GABA co-application potentiated PB blockade. Overall, the results indicate that block is produced by PB concentrations sixfold lower than for activation involving at least three inhibitory PB binding sites, suggest a role of blocked channels in GABA-triggered activity at therapeutic PB concentrations, and raise an important technical question regarding the effective rate of exchange during rapid perfusion of whole cells with PB.

UR - http://www.scopus.com/inward/record.url?scp=62349122248&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=62349122248&partnerID=8YFLogxK

U2 - 10.1085/jgp.200810081

DO - 10.1085/jgp.200810081

M3 - Article

VL - 133

SP - 171

EP - 188

JO - Journal of General Physiology

JF - Journal of General Physiology

SN - 0022-1295

IS - 2

ER -